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Abstract

An overlooked effect of ecosystem eutrophication is the potential to alter disease dynamics in pri-
mary producers, inducing disease-mediated feedbacks that alter net primary productivity and ele-
mental recycling. Models in disease ecology rarely track organisms past death, yet death from
infection can alter important ecosystem processes including elemental recycling rates and nutrient
supply to living hosts. In contrast, models in ecosystem ecology rarely track disease dynamics, yet
elemental nutrient pools (e.g. nitrogen, phosphorus) can regulate important disease processes
including pathogen reproduction and transmission. Thus, both disease and ecosystem ecology
stand to grow as fields by exploring questions that arise at their intersection. However, we cur-
rently lack a framework explicitly linking these disciplines. We developed a stoichiometric model
using elemental currencies to track primary producer biomass (carbon) in vegetation and soil
pools, and to track prevalence and the basic reproduction number (R0) of a directly transmitted
pathogen. This model, parameterised for a deciduous forest, demonstrates that anthropogenic
nutrient supply can interact with disease to qualitatively alter both ecosystem and disease dynam-
ics. Using this element-focused approach, we identify knowledge gaps and generate predictions
about the impact of anthropogenic nutrient supply rates on infectious disease and feedbacks to
ecosystem carbon and nutrient cycling.
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INTRODUCTION

One of the greatest impacts of human activities on Earth is
the steady increase in the emission and supply of biologically
reactive elements, such as nitrogen (N) and phosphorus, to
fuel society and our growing population (Steffen et al., 2015).
This rapidly changing environmental context is altering the
diversity, composition and interactions among species in all of
Earth’s environments (Erisman et al., 2013). However, an
overlooked effect of elevated anthropogenic nutrient supply is
the potential to alter disease through a variety of mechanisms
including changes in pathogen reproduction and transmission,
host physiology and fitness, and vector density (Borer et al.,
2016; Preston et al., 2016). Importantly, these changes in dis-
ease could feed back to alter ecosystem processes, especially
for autotroph hosts, including net primary productivity, ele-
mental uptake and elemental recycling. Currently, models in
disease ecology rarely track organisms past death, yet death

from infection can alter elemental recycling and nutrient sup-
ply to living hosts (Ruardij et al., 2005; Suttle, 2007). Thus,
both disease and ecosystem ecology stand to grow as fields by
exploring questions that arise at their intersection, including
disease impacts on the cycling of carbon (C) and elemental
nutrients (Preston et al., 2016; Fischhoff et al., 2020; Paseka
et al., 2020), and the role of death and nutrient recycling in
disease dynamics.
We currently lack a framework for predicting the breadth

of ways that infectious disease could impact elemental fluxes
and stocks and, conversely, the ways in which recycling of
nutrients from dead hosts could alter disease dynamics in liv-
ing hosts. We suggest that this impasse has occurred, in part,
because these areas of inquiry have arisen from different intel-
lectual lineages and as a result have focused on different cur-
rencies and response variables. In particular, disease ecology
has its roots in population ecology with a focus on host
health and epidemiology (May and Anderson, 1979); over the
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past few decades it has grown to include community interac-
tions in its modelling and predictions (Johnson et al., 2015;
Seabloom et al., 2015). Focal response variables in this disci-
pline include the prevalence and spread rate of infection
through a population (or community) of hosts. In contrast,
ecosystem ecology, with roots in geoscience, oceanography,
limnology and biogeochemistry, has made enormous advances
linking the flux of elements between biotic and abiotic forms,
and has embraced the importance of environmental microbes
in controlling elemental flux rates (Chapin et al., 2011). Focal
response variables in this discipline include the amount and
flux rates of energy and elements, particularly elemental nutri-
ents. However, while there has been isolated progress linking
ecosystems and disease (Suttle, 2007; Borer et al., 2016; Pre-
ston et al., 2016; Fischhoff et al., 2020), to date, the potential
key role that microbial pathogens of living primary producers
play in altering flux rates of C and nutrients has received little
attention. Similarly, while the impacts of environmental
change have received substantial attention in disease ecology,
there has been little attention to the role of host death in recy-
cling nutrients to living hosts.
Here, we integrate approaches from ecosystem and disease

ecology to illustrate the potential large effects of nutrient
influx and recycling on pools of C and the prevalence and
spread of infectious disease. To enable this synthesis, we
develop a model that draws from the lineages of both disease
and ecosystem ecology and uses elements as a shared cur-
rency. In particular, we develop a single model that tracks
organic and inorganic N and primary producer biomass (or
C) in living vegetation as well as litter and soil, and tracks the
transmission, prevalence (proportion of host population that
is infected) and basic reproduction number (R0, the number
of new infections arising from an initial infection) of a directly
transmitted infectious disease. Using this model, we demon-
strate that anthropogenic nutrient supply and recycling can
interact with disease to substantially alter predictions for both
ecosystem and disease outcomes. We use a stoichiometric
framework that describes the balanced uptake and recycling
of C and nutrients as they pass through biological systems
(Sterner and Elser, 2002). This element-focused modelling
approach opens the door for new insights into the impact of
anthropogenic nutrient supply on infectious disease and subse-
quent feedbacks to ecosystem C and nutrient cycling.

AN INTEGRATED MODELLING APPROACH

In spite of the strong lineages of research in disease and
ecosystem ecology, both of which embrace interactions
between microbes and their resources, these independent
research areas rarely learn from each other. One important
barrier is the lack of a common currency: ecosystem ecology
generally works in a currency of elements or energy, whereas
disease ecology generally uses a currency of host individuals
or populations. While tracking ’infected carbon’ may be some-
what non-intuitive for disease ecologists for whom entire hosts
are generally fully infected or not – and also somewhat non-
intuitive for ecosystem ecologists for whom C is simply an ele-
ment – this approach helps to bridge the gap between these
disciplines. Although the assumptions within each discipline

are standard and therefore may seem intuitive, neither is com-
pletely accurate. For example, when a single leaf of a tree
becomes infected, describing the whole tree as moving from
’susceptible’ to ’infected’ fails to capture organismal biology
and mischaracterises some aspects of the impact or dynamics
of infection (e.g. potentially overestimating spread rate). Simi-
larly, the elemental uptake and content of infected tissues can
differ from healthy tissues. Thus, ecosystem models that
ignore the influence of infection dynamics on elemental uptake
also may miss important elemental dynamics. Thus, by track-
ing susceptible primary producers and infection-induced
changes in physiology, chemistry and mortality, and defining
living primary producers (hosts) in units of C and nutrients,
we generate a model that captures the dynamics and feed-
backs between disease and ecosystem characteristics.
Disease is well known for its impacts on mortality, but viru-

lence also can lead to morbidity that alters physiological rates
and elemental uptake and recycling in living hosts. For exam-
ple, photosynthetic C capture rates have been shown to differ
in infected and uninfected primary producers (Lobato et al.,
2010; Jiang et al., 2016; Puxty et al., 2016). Ecosystem studies
tracking elements and energy may be reasonably accurate,
without explicit attention to infection, because data are col-
lected at large enough scales to average over infected and
uninfected hosts. However, infection can scale up to induce
substantial impacts at the ecosystem scale, leading to signifi-
cantly reduced net primary production. For example, fungal
infection can induce large reductions in biomass accumulation
in forests and grasslands (Seabloom et al., 2017; Fei et al.,
2019). These effects are not likely to remain constant with glo-
bal change; increasing elemental nutrient supply to ecosystems
(Steffen et al., 2015), for example, can lead to increasing,
decreasing or nonlinear changes in infection severity, patho-
gen spread and host mortality in plants (Dordas, 2008; Fones
and Gurr, 2017; Paseka et al., 2020). These impacts of infec-
tion can persist beyond host death as legacy effects of disease
by inducing changes in plant nutrient and defensive chemistry
that either speed up or slow down nutrient recycling (Jackrel
et al., 2019; Pazianoto et al., 2019). Thus, by acknowledging
that functional differences between infected and uninfected
hosts may alter content and fluxes of C and nutrients at the
ecosystem scale, we can ask how these relationships may qual-
itatively alter predictions for infection prevalence in host pop-
ulations and C and nutrient dynamics in ecosystems with
increasing nutrient supply.

Model structure

We developed the stoichiometric Ecosystem-Disease (ED)
model, to examine the dynamic consequences of infection in a
primary producer and feedbacks through both disease and
ecosystem characteristics (Fig. 1; Table 1). Key processes in
the model can be interpreted through lenses of disease or
ecosystem ecology; for example, growth and death rates [dis-
ease] are analogous to rates of photosynthesis and litter pro-
duction [ecosystem] (Table 2). While a variety of modelling
approaches incorporate coupled elemental cycles via organis-
mal physiology (Rastetter, 2011), we chose to use a Droop
model formulation (Droop, 1973) to allow for a flexible
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stoichiometric balance in the uptake and decomposition of
host C and nutrients. While originally developed for phyto-
plankton, Droop models have been applied to a wide range of
autotrophs, including vascular plants (Sterner and Elser, 2002;
Nifong et al., 2014). With the Droop formulation, the host
uptake rate of one elemental nutrient varies with the availabil-
ity of the others. While the ED model formulation is general,
we use a forest as our case study so that we can compare the
dynamics to a well-studied ecosystem model (Multiple-Ele-
ment-Limitation, MEL) that describes a deciduous forest
(Rastetter and Shaver, 1992; Rastetter et al., 1997). The ED
model represents a simpler alternative (e.g. no threshold func-
tions) and includes fewer parameters than the MEL model
approach (Rastetter and Shaver, 1992; Rastetter et al., 1997).
Appendix S1A provides details on the ED model formulation.
However, in spite of these structural differences, when param-
eterised for a forest (in the absence of disease) analogous to
Rastetter et al. (1997), these models yield quantitatively simi-
lar equilibrium predictions (Table S1). By developing an anal-
ogous model with fewer parameters necessary to describe
healthy forest dynamics, we are able to expand the ED model
to track both susceptible and infected vegetation (nearly dou-
bling the number of parameters).
The ED model is a system of ordinary differential equations

that represent susceptible and infected vegetation and the flow
of C and N (Table 1). Here we track C and N as they move
through susceptible (S) and infected (I) hosts. Photosynthetic
C uptake describes growth, which produces uninfected tissue
(as carbon, S). Growth rates, which differ for susceptible and
infected vegetation (subscripted S and I respectively), follow
Droop dynamics (Droop, 1973), depending on a maximum
growth rate ðμ

S
,μ
I
Þ and vegetation nutrient to C ratios (Qs,QIÞ.

Because plants require nutrients for growth, we describe this
constraint with a minimum N:C ratio (qS,qI). Variables Qs

and QI model these dynamical N:C ratios, which can vary
between the minima (qS,qI) and maxima (Q

S
,Q
I
Þ. The differen-

tial equations for Qs,QI include terms for N:C dilution due to
vegetation growth. We model virulence by implementing a
cost of infection, with lower maximum growth rates (μ

I
<μ

S
)

and higher death rates ðδI>δSÞ for infected than susceptible

hosts. We couple nutrients into the infection dynamics by
assuming, as with vegetation growth, that transmission (β)
increases and saturates with nutrient content of infected plants
(increasing N:C), based on empirical evidence in a wide range
of primary producers (e.g. Mitchell et al., 2003; Smith, 2007;
Cronin et al., 2010; Cheng et al., 2019). In particular, suscep-
tible hosts become infected at a rate that depends on the N:C
ratio of infected hosts following a Michaelis–Menten (also
known as ‘Holling type II’ or ‘Monod’) equation (Table 1),
where β is the maximum transmission rate and κ is the half
saturation constant (Table 2). Transmission results in a flow
of vegetation C and vegetation nutrients from susceptible to
infected,β QIð Þ, shown as solid and dashed arrows in Fig. 1.
Once vegetation becomes infected, we assume that the N:C
ratio changes from Qs to QI. The shift in stoichiometry is
tracked by the third term in the differential equation describ-
ing QI (Table 1).
We assume that constant death rates ðδS and δIÞ produce lit-

ter, releasing vegetation C and N into the soil (following
Rastetter et al., 1997). Variables DS and DI track soil organic
C, and RS and RI track soil organic N from susceptible and
infected vegetation respectively. We assume constant rates of
loss of soil organic C, either to long-term storage or move-
ment out of the system as, for example, CO2 or dissolved
organic C, given by ɛS and ɛI: We do not track atmospheric
C after it is released from the detritus via microbial respira-
tion; we leave this for future work. The net mineralisation
rate, or transformation of soil organic N into plant-accessible
inorganic N (N, Fig. 1), occurs at rate r.
Vegetation uptake of soil inorganic N increases with N fol-

lowing Michaelis–Menten kinetics (Table 1), with maximum
uptake rate ci and half saturation constant ai, for i¼S,I
(Table 2). Uptake also depends on vegetation N:C ratios; as Qi

approaches its maximum value, Q
i
, the uptake rate decreases.

Vegetation N:C ratios decrease due to growth dilution (Sterner
and Elser, 2002). We note that although the model (and Qi, in
particular) is formulated in terms of N:C, we present results in
the ratio of C:N (Q�1

i ), more common in ecosystem ecology.
Finally, we derived the number of new infections per initial

infection in a completely susceptible host population, or the

Ecosystem Model Disease Model Ecosystem-Disease Model

Figure 1 The Ecosystem-Disease (ED) model integrates key elements of ecosystem and disease ecology to track susceptible and infected hosts and the role

of disease on pools and fluxes of elements as shown in Table 1.

© 2020 John Wiley & Sons Ltd.
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basic reproductive number (R0) of the pathogen. Thus, the
basic reproductive number depends on the disease-free equilib-
rium. It takes the following form:

R0 ¼
β Q∗

I

� �
S∗

δI
¼ βQ∗

I S
∗

κþQ∗
I

� �
δI

where Q∗
I and S∗ are the solutions for these state variables at

the disease-free equilibrium. These values (Q∗
I ,S

∗) were
obtained numerically using MATLAB ODE23 solver, with the
initial condition I0 ¼ 0. Equilibria solutions were obtained
after running the model long enough to ensure solutions were
stabilised near steady-state values (10 000 years).

Model parameterisation

We parameterised this model using literature data from forest
ecosystems to explore the consequences of anthropogenic N

supply for the dynamics of C, N and infection of forest vege-
tation. We examine the dynamics of a novel pathogen invad-
ing a forest (e.g. beech bark disease, sudden oak death,
chestnut blight, Dutch elm disease, Fei et al., 2019) by starting
simulations with a very small amount of infected tissue
(0.0005 of 22 000 g C m−2 in the forest, parameterised from
Rastetter et al., 1997).
While the ED model can be parameterised to describe infection

in a wide range of primary producers (e.g. forest, lake, grass-
land), we take a ’modelling for understanding’ approach (Rastet-
ter, 2017) in which we use existing parameter ranges and recreate
equilibria based on the extensive ecosystem modelling and empir-
ical work that has been done in two deciduous hardwood forests
(i.e. Harvard Forest and Hubbard Brook). Because forest ecosys-
tem models typically do not include estimates for parameters
associated with disease, we estimated parameter values for the
ED model from a variety of sources (Table 2; for details of
parameter estimation see Appendix S1B). Additionally, we per-
formed a sensitivity analysis for this forest case study (Appendix
S1C and Appendix S5) to determine the parameters for which
estimation uncertainty would have the greatest impact if this
model were to be used for prediction.
Here, we simulate the dynamics of this forest ecosystem to

understand the dynamic consequences and magnitude of
changes caused by disease relative to other ecosystem perturba-
tions (e.g. doubling CO2, Rastetter et al., 1997). Because trees
are long-lived hosts, simulations to examine transient temporal
dynamics were run for 1000 years; simulations to examine the
sensitivity of equilibria to variation in disease and ecosystem
parameters were run for 10 000 years. All model simulations
take place in a closed ecosystem in which all N is recycled via,
for example, mineralisation of soil organic N. In the current
work, we examine the impacts of increasing N on ecosystem
and disease dynamics by varying the total N among simula-
tions. While a closed system is not an ecologically realistic sce-
nario, we save simulations of an open system, in which N can
be gained through processes such as N deposition and lost via
processes such as leaching (Galloway et al., 2008), for a future
analysis. For simulation details, see Appendix S2.

RESULTS

While the ED model framework is general and could be
parameterised to represent infection of primary producers in
many different ecosystem types (e.g. grasslands, oceans,
lakes), the parameterisation and simulations presented here
describe a 350-year-old deciduous forest ecosystem with
dynamics and equilibria in the absence of infection that have
been described and analysed elsewhere (Appendix Table S1,
Rastetter et al., 1997). As in this previous work, we assume
constant conditions (e.g. no phenological change or seasonal
cycles). Thus, the patterns we describe provide qualitative
insights into the influence of the feedbacks between elemental
nutrient availability and disease dynamics.

Temporal dynamics and feedbacks

We examine the influence of disease and nutrient supply on
the temporal dynamics and feedbacks within a forest

Table 1 Model equations, state variables and units

dS
dt ¼ μS QSð ÞSþμI QIð ÞI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth

�β QIð ÞSI|fflfflfflffl{zfflfflfflffl}
infection

� δSS|{z}
death

dI
dt¼ β QIð ÞSI|fflfflfflffl{zfflfflfflffl}

infection

� δII|{z}
death

dDS

dt ¼ δSS|{z}
death released C

� ɛSDS|fflffl{zfflffl}
C loss

dDI

dt ¼ δII|{z}
death released C

� ɛIDI|ffl{zffl}
C loss

dRS

dt ¼ δSSQS|fflfflffl{zfflfflffl}
death released N

� rRS|{z}
N recycling

dRI

dt ¼ δIIQI|fflffl{zfflffl}
death released N

� rRI|{z}
N recycling

dQS

dt ¼ αS N,QSð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N uptake

� μS QSð ÞQS|fflfflfflfflfflffl{zfflfflfflfflfflffl}
growth dilution

dQI

dt ¼ αI N,QIð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N uptake

� μI QIð ÞQS|fflfflfflfflfflffl{zfflfflfflfflfflffl}
growth dilution

þ β QIð ÞS QS�QI½ �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Infection induced change in N:C

dN
dt ¼�αS N,QSð ÞS�αI N,QIð ÞI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N uptake

þ rRsþ rRI|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N recycling

where

Droop growth function: μi Qið Þ¼ μ
i
1� qi

Qi

h i
for i¼S,I

N uptake function: αi N,Qið Þ¼ ciN
aiþN

Q
i
�Qi

Q
i
�qi

" #
for i¼S,I

Transmission function: β QIð Þ¼ β̂QI

κþQI

Variable Meaning Units

S Susceptible vegetation C g C m−2

I Infected vegetation C g C m−2

DS Soil organic C from dead susceptible vegetation g C m−2

DI Soil organic C from dead infected vegetation g C m−2

RS Soil organic N from dead susceptible vegetation g N m−2

RI Soil organic N from dead infected vegetation g N m−2

QS Susceptible host N:C ratio gN gC−1

QI Infected host N:C ratio gN gC−1

N Soil Inorganic N g N m−2

© 2020 John Wiley & Sons Ltd.
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ecosystem by comparing cases when infection is or is not pre-
sent. Simulations with disease begin with a very small amount
of infection, and while spread is initially slow, infection even-
tually sweeps through the forest (Fig. 2a), with infection
prevalence increasing to a final steady state after c. 400 years
(Fig. 2b). Because of the rate of spread, the amount of
infected vegetation increases rapidly between 200 and
400 years causing many disease and ecosystem properties to
change rapidly in this 200-year period. The duration of the
transient dynamics is surprisingly insensitive to the amount of
C initially infected; even when the initial infection is 1000
times larger than shown in Fig. 2 (I0 ¼ 0:5 gC m−2), the tran-
sient dynamics still last for 200 years (Appendix S2, Fig. 1).
In our simulation, feedbacks between infection prevalence, soil

N, vegetation C and transmission play out over hundreds of
years. Based on empirical evidence from many plant diseases, we
assume that the maximum C:N is lower in infected than healthy
vegetation (Mitchell et al., 2003; Smith, 2007; Cronin et al., 2010;
LeRoy et al., 2011). Because N is higher in infected vegetation,
as infection sweeps through the forest, the model dynamics show
a decline in the C:N of infected vegetation (Fig. 2c). Infected veg-
etation takes up N faster than uninfected vegetation (due to, e.g.,
physiological manipulation by the pathogen Monier et al., 2017),
so the spread of disease initially depletes soil inorganic N (Fig. 2
f; ~year 200–300). Thus, overall forest growth is strongly N lim-
ited during this period. However, infected vegetation also has a
slower maximum growth (i.e. photosynthetic) rate and an

elevated death (i.e. litter production) rate, which ultimately drives
down vegetation C once infected hosts begin to die (Fig. 2e).
Death of infected hosts releases soil inorganic N, causing it to
build up in the system (Fig. 2f; ~year 300–700). Thus, in this
closed system, soil inorganic N first decreases in the early stages
of the epidemic, then increases as the epidemic progresses and
hosts die, ultimately reaching a final, higher, steady state c.
600 years after the pathogen invades. Variation in vegetation C:
N ratio throughout this period also drives complementary
changes in transmission rate (β), a key disease parameter (Fig. 2
d). Since we assume that transmission increases with N (declining
C:N), transmission over time is inversely related to vegetation C:
N. A surprising consequence is that per capita spread rate (i.e.
transmission) is highest at the end of the epidemic (Fig. 2d),
whereas population level spread is fastest in the middle (Fig. 2b;
steepest increase after c. 300 years).
Ecosystem properties are significantly altered by feedbacks

between disease and elemental nutrients. First, infection
causes vegetation C to decline by 1 kg m−2 when disease
enters the system (Fig. 2e). For perspective, this decrease is
twice the magnitude of change that is predicted when atmo-
spheric CO2 is doubled (Rastetter et al., 1997). Thus, disease
can drive meaningful changes in C storage. Soil C follows an
almost identical trajectory (data not shown). As infection
sweeps through the forest, soil N declines sharply (Fig. 2f;
~year 200–300) because of the higher N content (lower C:N)
of infected vegetation. However, as vegetation mortality

Table 2 Parameter names, meanings, values and units, when parameterised for a 350-year-old deciduous forest. For information about parameter estima-

tion, see Appendix S1

Parameter Meaning – ecosystem Meaning – disease Value

μ̂S Maximum photosynthetic rate of susceptible host

vegetation

Maximum growth rate of susceptible host vegetation 0.0754 y−1

μ̂I Maximum photosynthetic rate of infected host

vegetation

Maximum growth rate of infected host vegetation 0.93 μ̂S y−1

qS Minimum whole plant N:C ratio of susceptible host

vegetation

Susceptible host N:C ratio (minimum whole plant) 1/439 gN gC−1

qI Minimum whole plant N:C ratio of infected host

vegetation

Infected host N:C ratio (minimum whole plant) 1/439 gN gC−1

cS Maximum N:C uptake rate of susceptible host

vegetation

Susceptible host resource acquisition rate (maximum N:

C)

3:8∗10�4 gN gC−1 y−1

cI Maximum N:C uptake rate of infected host

vegetation

Infected host resource acquisition rate (maximum N:C) 1:001∗cS gN gC−1 y−1

aS N:C uptake half saturation constant of susceptible

vegetation

Resource acquisition (N:C) half saturation

constant susceptible host veg

0:003 gN m−2

aI N:C uptake half saturation constant of infected

vegetation

Resource acquisition (N:C) half saturation constant

infected host veg

0:003 gN m−2

Q̂S Maximum whole plant N:C of susceptible vegetation Susceptible host chemistry (maximum N:C) 1/120 gN gC−1

Q̂I Maximum whole plant N:C of infected vegetation Infected host chemistry (maximum N:C) 1:25∗Q̂S gN gC−1

r N mineralisation rate Resource (N) supply (recycling) rate 0.0084 y−1

β̂ Maximum transmission rate Maximum transmission rate 1:2∗10�5 m2 gC−1 y−1

κ Transmission half saturation constant Transmission half saturation constant 0.009 gN gC−1

δS Vegetation litter production rate of susceptible

vegetation

Death rate of susceptible host vegetation 0.0412 y−1

δI Vegetation litter production rate of infected

vegetation

Death rate of infected host vegetation 1:001∗δS y−1

ɛS Microbial respiration and burial of susceptible

vegetation carbon

Carbon loss rate of susceptible host vegetation 0.0648 y−1

ɛI Microbial respiration and burial of infected

vegetation carbon

Carbon loss rate of infected host vegetation 1:1∗ɛS y−1

© 2020 John Wiley & Sons Ltd.
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(c)

(e) (f)

(d)

(a) (b)

Figure 2 Predicted temporal dynamics of disease (panels a, b, d) and ecosystem (panels c, e, f) responses with the spread of infection of primary producers.

Parameter values reflect a 350-year-old deciduous forest, with initial conditions and units shown in Table 1 with a small amount of initial infected

vegetation; S0 ¼ 2200, I0 ¼ 0:0005,DS0 ¼ 1300, DI0 ¼ 0, RS0 ¼ 521, QS0 ¼ 190�1,QI0 ¼ 190�1,N0 ¼ 1. In simulations without disease, I0 ¼ 0:

© 2020 John Wiley & Sons Ltd.
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increases and total forest vegetation is reduced (Fig. 2e), there
is a greater influx of N to the soil paired with reduced total
uptake of N, leading to a slow (centuries long) approach of
soil inorganic N to a new steady state that is nearly double
that in a comparable forest without infection (Fig. 2f). Thus,
disease can substantially alter predictions for both vegetation
C and soil N over hundreds of years.
Importantly, these simulations demonstrate that the pres-

ence of infection and the feedbacks between disease and nutri-
ent cycling lead to strong variation through time in both
disease processes (e.g. transmission) and ecosystem properties
(e.g. vegetation C, soil inorganic N). Non-intuitive outcomes
arise, such as long-term fluctuations of soil inorganic N due
to feedbacks among host elemental content, growth rate,
transmission, death and decomposition as the pathogen
spreads through the forest.

Feedbacks matter: interdependencies of plant chemistry and disease

Although most disease models assume no change in trans-
mission as a function of environmental nutrient supply (but
see Hurtado et al., 2014), the results from our model suggest
that the influence of ecosystem properties on temporal
dynamics of infection may be strong. To examine the role of
feedbacks between nutrient cycling and temporal disease and
ecosystem dynamics, we simulated the forest ecosystem with
and without feedbacks. In particular, we compared the sys-
tem dynamics with and without coupling between disease
and nutrient supply. We decoupled this ecosystem-disease
linkage by assuming constant vegetation C:N ratios (hence
constant transmission rates) set to match the final equilib-
rium values of the coupled simulations (equations in
Appendix Table S2).

(a)

(c) (d)

(b)

Figure 3 Transient dynamics of both ecosystem and disease properties are absent when infection is decoupled from nutrient dynamics (a–c, black lines,

Appendix Table S2) compared to nutrient feedbacks to growth (a–c, red lines, Table 1). Feedbacks from infection to growth rates impact predictions for

prevalence (d) across the range of transmission values shown in (c) in the constant C:N model. Panel (d) compares the constant C:N model with nutrient

feedback to growth (black lines) and without feedback to growth (blue lines). Further details for the uncoupled case are in Appendix 2C and D.

© 2020 John Wiley & Sons Ltd.
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When nutrients can recycle and vary through time to influence
pathogen transmission, long-term transient dynamics emerge
(Fig. 3, red lines) that are not present in simpler disease models
where resources are constant and decoupled from disease dynam-
ics (Fig. 3, black lines). These transient dynamics can substan-
tially alter ecosystem and disease predictions, including growth
rates, vegetation chemistry and pathogen transmission for hun-
dreds of years. For example, as infection spreads through the for-
est vegetation (t = 200–400 years), the growth (Fig. 3b) of
infected vegetation is reduced because it is N limited (higher soil
C:N due to reduced N, than at equilibrium, Fig. 3a). Even the
growth rate of susceptible vegetation decreases – albeit less steeply
– due to N limitation (solid red line; Fig. 3b), following the deple-
tion of soil inorganic N (Fig. 2f). Transmission rate depends on
the chemistry of the infected vegetation. Although transmission
rate is reduced for hundreds of years as infection initially spreads
through the forest, this rate accelerates as host death increases soil
N. When modelled in a more traditional SI framework, these

dynamics are absent (Fig. 3, black lines). Thus, decoupling nutri-
ent recycling from vegetation and disease dynamics, as in most
disease models, generates substantially different long-term
dynamics. Ignoring this coupling fails to capture long-term
ecosystem-disease dynamics and feedbacks.
Notably, from a disease ecology perspective, transmission

varies through time, responding to environmental nutrient
supply (Fig. 3c). Across the range of transmission rates in
Fig. 3c, when nutrient supply impacts transmission rates of
the disease but also feeds back to alter growth rates of the
host, this variation has a substantial impact on infection
prevalence in the forest (Fig. 3d, black lines). However, when
host growth rates do not vary with environmental nutrient
supply (i.e. no ecosystem feedbacks) as in most disease model
formulations, this same range of variation in transmission has
virtually no impact on pathogen prevalence at the scale of the
forest (Fig. 3d, blue lines; equations in Appendix Table S2).
Thus, the coupling of disease with elemental supply and

(a)

(c) (d)

(b)

Figure 4 Impacts of disease properties, transmission (panels a, b) and virulence (panels c, d), on ecosystem, soil and vegetation, outcomes. Here, virulence

in panels (c) and (d) is described as a percent reduction of the healthy vegetation photosynthetic (growth) rate μI
μS
∗100

� �
.
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recycling leads to fundamentally different predictions for
infection dynamics throughout the forest.
From an ecosystem perspective, the elemental composition

(Fig. 3a) and the growth rate (Fig. 3b) of uninfected vegeta-
tion are impacted by the dynamic feedbacks induced by infec-
tion. These differences (Fig. 3a and 3b, dashed vs. solid lines)
additionally demonstrate that the feedbacks via host death
and nutrient recycling, that cause variation in transmission
and growth rates, also determine long-term dynamics of the
healthy (i.e. susceptible) vegetation.

Disease effects on long-term steady-state ecosystem properties

We examined the sensitivity of ecosystem properties of the forest
to the rates of disease transmission and virulence. Unsurprisingly,
we found a minimum transmission rate below which infection
cannot persist in the forest (Fig. 4a). When this transmission rate
is exceeded, infected vegetation biomass (as C) increases steadily
with increasing transmission rate, replacing healthy vegetation.
Because infected vegetation has a lower growth rate and higher
death rate, once infection can be sustained in the forest, total veg-
etation declines, resulting in reduced long-term C storage in the
forest soils (Fig. 4b). This transmission rate threshold corre-
sponds with a bifurcation where the disease-free equilibrium and
an endemic equilibrium exchange stability and the basic repro-
ductive number passes the value of 1.
With increasing virulence of the pathogen (i.e. a greater dis-

ease-induced reduction in growth rate), total vegetation C and
vegetation C:N decline. These dynamics lead to a buildup of
inorganic N in the soil (Fig. 4c) and a decline in soil C (Fig. 4
d). While inorganic N is soluble and the majority would likely
be released from a forest with high infection (Rhoades et al.,
2017), the closed N cycle provides insight into the amount lost
from the vegetation with increasing pathogen virulence.
When virulence reduces maximum growth rates, a threshold

occurs where there is a sharp increase in soil inorganic N and
a reduction in soil C (Fig. 4c & 4d, at approximately 7%
growth rate reduction). While this abrupt threshold looks like
a bifurcation (similar to 4a and 4b) we found no evidence for
a bifurcation in this case (details in Appendix S3). Near this
abrupt threshold, model predictions are extremely sensitive to
small variations of this parameter, where vegetation density is
more strongly influenced by changes in virulence, yielding
rapid changes to soil N and C (see Appendix Fig. S2).

Ecosystem effects on long-term steady-state disease properties and

feedbacks

We also examined the sensitivity of both disease and ecosys-
tem properties to the total amount of N in the forest. At low
ecosystem N, the number of new infections per initially
infected host (R0) is too low to sustain infection in the forest.
With additional N, R0 passes the critical threshold to sustain
infection, and the pathogen can successfully invade and
spread (Fig. 5a). This initial rate of spread increases with total
ecosystem N, which, for the current parameter values, acts
primarily as a function of the susceptible host equilibrium
(dotted line in Fig. 5a), rather than changes in transmission
rate (dashed line). More details on the elasticity of R0 for

(a)

(b)

(c)

Figure 5 Contour figures depicting the response of disease dynamics and

ecosystem properties to increasing total ecosystem N. Panel (a) shows the

contribution of the two components of the R0 equation to changes in

ecosystem N; (b) shows the impact of disease on vegetation C; and (c)

shows the long-term transient dynamics in soil N with increasing

ecosystem N. The two components of R0 (a) are changed by a factor of

10,000 for visualisation purposes, only (R0 elasticity details presented in

Appendix S4).
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these factors are provided in Appendix S4. Total vegetation C
(Fig. 5b) increases steadily with increasing ecosystem N. How-
ever, at low ecosystem N, the uptake and growth of healthy
hosts is limited by N availability and infection cannot persist.
When there is sufficient ecosystem N for the pathogen to
invade, additional N leads to an increasing infection preva-
lence, an increasing proportion of forest C that is infected,
and a slightly reduced amount of total vegetation C (Fig. 5b).
With sufficient N for infection to be sustained in the forest

(approximately 270 g m−2, where R0> 1), infected hosts take up
and store N in their vegetation, causing soil inorganic N to
decline (Fig. 5c). Surprisingly, at intermediate ecosystem N,
infection feeds back to reduce soil N, in spite of increased N
availability. This occurs because infected vegetation has higher
N uptake (e.g. Fig. 2c), but most of the vegetation remains
uninfected with this amount of ecosystem N (Fig. 5b), so soil
inorganic N is drawn down but death rates are not substantially
elevated. Although this reduction in soil inorganic N is tran-
sient, it takes thousands of years to shift from the vegetation to
the soil at these intermediate rates of ecosystem N. Thus, while
transient, the timescale of this shift is far longer than any empir-
ical study, so likely represents a relevant biological outcome.
With increased ecosystem N, the total ecosystem N availability
is greater than the biological demand for growth, so soil inor-
ganic N steadily increases with supply (Fig. 5c).

DISCUSSION

The ED model we present here builds a much-needed bridge
between the fields of disease ecology and ecosystem ecology,
and demonstrates the rich array of new dynamics that can
arise and new questions that can be asked at this intersection.
Explicitly including stoichiometric constraints on elemental
uptake and the impacts of disease opens the door to a mecha-
nistic understanding of the role of disease on nutrient limita-
tion of growth and other biological process rates and
elemental pools. Dynamic feedbacks between elemental nutri-
ents and disease expand the range of questions about infec-
tious disease to include relationships among nutrient supply,
transmission, growth rates and virulence, infection prevalence,
vegetation chemistry, nutrient recycling, and soil N and C
storage. Thus, this single modelling framework allows us to
examine disease impacts on ecosystem C and N pools and
rates and, concurrently, track dead organisms that alter the
nutrition of living hosts. With this framework, we can inte-
grate the fields of ecosystem and disease ecology to gain a
deeper understanding of the feedback loops that link them.
An important first step for determining whether including dis-

ease or disease-induced feedbacks alters ecosystem dynamics was
to assess the impact of infection on the dynamics of a well-stud-
ied system. The MEL model (Rastetter and Shaver, 1992; Rastet-
ter et al., 1997), a mechanistic, multi-element model of a forest
ecosystem provided just such an opportunity. This model has
been used to study the short- and long-term impacts of a sub-
stantial ecosystem perturbation – an instantaneous doubling of
atmospheric CO2 – allowing us to contextualise the impact of dis-
ease. This exercise demonstrated that, for example, infection
induced a decline in vegetation C that was nearly twice the mag-
nitude of change induced by doubling CO2 (Rastetter et al.,

1997). Similarly, in the final years of our simulations, infection in
the forest caused an increase in soil inorganic N that was approx-
imately double the magnitude predicted with a doubling of atmo-
spheric CO2 (Rastetter et al., 1997). Thus, although our
modelling goal was understanding and logical prediction, not
forecasting (Mayr, 1998; Rastetter, 2017), comparing to a well-
studied, mechanistic ecosystem model clarifies that disease
sweeping through a forest may cause changes in ecosystem prop-
erties and feedbacks that are comparable to those of an extreme
perturbation to elemental supply rates, providing critical context
for this work. Importantly, these dynamics are supported by
empirical data demonstrating that many widespread, non-native
diseases of trees can cause substantial mortality (e.g. chestnut
blight, Dutch elm disease, beech bark disease, dogwood anthrac-
nose), leading to estimates of more than 3 Tg forest C lost each
year in the United States to disease, alone (Fei et al., 2019). Thus,
these changes radically alter the cycling of forest C, and presum-
ably other elements, as well. This modelling framework provides
an opportunity for building our understanding of the feedbacks
and outcomes of pathogen invasion for ecosystem dynamics.
Including biological realism in the form of coupled elemental

resource uptake (Elser et al., 2010) and a dependence of growth
and infection on environmental nutrient supply (Bawden and
Kassanis, 1950; Elser, 2006; Fatima and Senthil-Kumar, 2015)
gave rise to a range of predictions for altered dynamics, feed-
backs and legacy effects of pathogens in ecosystems. For exam-
ple, the ED model, parameterised for a forest, predicted that
disease would lead to an initial decline, then dramatic increase in
soil inorganic N, due to short-term uptake followed by long-term
feedbacks due to enriched vegetation N (reduced C:N). It also
predicted, more rapid mineralisation, but ultimately reduced tree
growth (photosynthetic rate) and uptake of N in a forest with
disease. The ED model further demonstrated that increased
pathogen transmission reduced forest vegetation C uptake, caus-
ing a decline in soil C storage. Empirical evidence tracking
pathogen impacts is consistent with many of these predictions.
For example, oomycete infection can change the chemistry of liv-
ing host biomass in European beech trees (Wang et al., 2003;
Fleischmann et al., 2004), even increasing N content and reduc-
ing C:N of litterfall in some tree species (Cobb et al., 2013), with
impacts on the rates of both nutrient uptake and litter decompo-
sition and recycling (Cobb and Rizzo, 2016). Consistent with the
ED model predictions, oomycete infection can reduce the photo-
synthetic rate (Fleischmann et al., 2002), varying as a function of
environmental nutrient supply (Fleischmann et al., 2010). Empir-
ical support for ED model dynamics is found in other ecosys-
tems, as well. For example, in a mesocosm study, phytoplankton
infection by chytrids (fungal parasites) suppressed the spring
phytoplankton bloom, reduced biomass and reduced the C nutri-
ent (elevated P content, in this case) in the seston (Frenken et al.,
2016; Frenken et al., 2017). Viral infection in picocyanobacteria,
the dominant primary producers in the oceans (Field et al., 1998;
Flombaum et al., 2013), reduces photosynthetic rates (Puxty
et al., 2016). As a consequence, less C is fixed, causing a decline
in the oceanic C sink. Estimates based on laboratory experi-
ments, range from 0.02 up to 5.39 Pg C per year lost to viral-in-
duced inhibition of CO2 fixation, where the upper value
approximates twice the net C uptake of the global oceans over
2000–2012 (Puxty et al., 2016; Bindoff et al., 2019).
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While no studies quantifying the ecosystem impacts of forest
pathogens map directly onto the scenario described in the ED
model, the qualitative model predictions are surprisingly con-
cordant with other, related, work in forests. For example, mor-
tality of centuries-old forests from insect outbreaks can cause
leaching and export of up to nearly 75% of the inorganic N
(Rhoades et al., 2017), qualitatively reflecting the ED model
predictions for soil inorganic N release due to pathogen-in-
duced mortality. In a temperate forest in which disease caused
replacement of a dominant species (beech) by a new, N-rich
species (sugar maple), analogous to disease altering the elemen-
tal content of the forest in the single-species ED model, the for-
est-scale ecosystem dynamics were remarkably similar to ED
model dynamics. In particular, beech bark infection (bark-
cankering fungus of the genus Neonectria) swept through New
England forests in the 1950s causing beech mortality and
replacement with sugar maple, and leading to increased forest-
scale foliar N, soil inorganic N and decreased soil C:N (Lovett
et al., 2010), albeit via disease-induced species replacement
rather than physiological changes in C and N dynamics with
infection. Nonetheless, the qualitative predictions that emerge
from tree–pathogen interactions in the parameterised ED
model are borne out in these related scenarios.
The dependence of infection and growth on nutrient supply

also led to feedbacks that substantially altered predictions of
disease dynamics. The biologically motivated coupling of
growth rates (Lobato et al., 2010; Jiang et al., 2016; Puxty
et al., 2016) and transmission rates (Smith, 2007; Fatima and
Senthil-Kumar, 2015) to nutrient supply, although rarely
included in models of disease dynamics (but see Hurtado et al.,
2014), led to feedbacks that accelerated per capita transmission
rates through the epidemic and dramatically increased the pre-
dicted infection prevalence. When transmission was not coupled
with growth rates, nutrient-induced changes in transmission
caused virtually no change in infection prevalence. In disease
ecology, there is an increasing recognition that the abstract con-
cept of the transmission rate, β, is a representation that may
overlook nonlinearities and heterogeneities in many host patho-
gen systems (McCallum et al., 2017). For example, variation in
transmission rate can be driven by variability in host contact
behaviour, host physiology or infection-driven feedbacks on
host behaviour (Ezenwa et al., 2016; VanderWaal and Ezenwa,
2016; White et al., 2018). While host immune responses as a
function of resource availability have been considered (Cressler,
Nelson, Day, & Mccauley, 2014), their connection to nutrient
cycling processes that could drive transient dynamics in trans-
mission rate at the ecosystem level remain unclear. Thus, varia-
tion in both growth and transmission rate with the nutrient
environment, which can both change as a function of host mor-
tality and affect host mortality in turn, points to an exciting
avenue of inquiry by disease ecologists.
Disease and ecosystem ecology often function on very differ-

ent timescales, but this model clarifies that disease may modify
long-term forest dynamics in ways that change how we think
about the system (Hastings, 2016). The timescales of decades,
centuries and even longer that are predicted by this model may
be inconceivably long for many disease ecologists, whereas these
timescales are likely more familiar for ecosystem ecologists
(Rastetter and Shaver, 1992; Rastetter et al., 1997). These long

timescales in the current work arise primarily as a result of the
relatively slow C uptake rates. Nonetheless, the model produced
predictions that reflect timescales consistent with the docu-
mented rates of change in forest soils (Perruchoud et al., 1999),
including long-term soil responses to elevated tree mortality
(due to, e.g., fire, logging, Bowd et al., 2019). These results also
suggest that in a younger forest (<140 yo), the dynamics and
feedbacks in response to disease would likely operate signifi-
cantly faster because of the relatively higher C uptake rates
(Pugh et al., 2019). While further model testing would benefit
from experimentation in another ecosystem dominated by auto-
trophs with shorter generation times and rapid recycling rates
(e.g. aquatic phytoplankton, Carpenter et al., 1992), long-term
data sets from ecosystems in which disease was monitored also
could provide a valuable resource for further work (Knapp
et al., 2012). Given the long time lags from disease spread to
ecosystem feedbacks, a model such as this one could be a strong
candidate to provide early warning of long-term changes in ele-
mental dynamics due to forest disease emergence (O’Regan and
Drake, 2013).
While the ED model provides an important starting point

for examining the intersection of disease and ecosystem
dynamics, including other biologically realistic details, while
outside the scope of the current work, will likely modify the
predicted dynamics and lead to additional insights. For exam-
ple, defensive compounds accumulated in response to infec-
tion while alive may substantially alter decomposition and
nutrient recycling rates (Rahman et al., 2013). At the scale of
the forest, the ED model effectively described only a single
species with ‘trait’ variation induced only by infection, yet
inclusion of trait variation among individuals and species can
alter dynamic predictions about ecosystem processes (Ciancia-
ruso et al., 2009). This form of realism could be particularly
influential if, for example, transmission differed by species
and the relative abundance of species changed in response to
infection. Further, in the current formulation, we made the
simplifying assumption that C was gained and lost (open sys-
tem for C), but N was not (closed system for N), but a more
realistic system with substantial N inputs and losses (Gal-
loway et al., 2008) could alter the fluxes and feedbacks of
both C and N, as it did for a forest ecosystem without disease
(Rastetter and Shaver, 1992; Rastetter et al., 1997). The cur-
rent model analysis suggests that additional biological realism
that introduces heterogeneity in the host (e.g. stage- or age-
structure) or in the infection processes (e.g. adding a recov-
ered class) also could feed back to alter ecosystem processes.
Finally, seasonality can influence disease in many systems
(Altizer et al., 2006), and if seasonal shedding of infected
leaves reduces pathogen spread to uninfected host tissues or
new hosts (Patharkar et al., 2017), this could reduce pathogen
spread and dramatically slow or alter the long-term feedbacks
that influence nutrient recycling. These points each represent
examples of the exciting range of questions that could build
from the current model, informing the conditions under which
disease will most strongly influence ecosystem dynamics.
Given the increasing rate of anthropogenic nutrient supply

and the growing evidence of the importance of elemental
nutrients in controlling the rates and impacts of infection in
primary producers, exploring ecosystem consequences of
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elemental nutrient supply is clearly important at the socio-en-
vironmental frontier for a variety of reasons. First, disease
ecology has a multi-decadal history of delving into the effects
of elemental nutrients in increasing infection virulence in hosts
as well as the role of disease in controlling the relative com-
petitive abilities of hosts and the resulting dynamics of host
communities. However, the consequences of these nutrient–-
disease–host interactions for elemental pools and fluxes
remain relatively unexplored (Mitchell, 2003; Preston et al.,
2016) even though these interactions modify key regulating
ecosystem services. In contrast, ecosystem ecology has a
strong focus on environmental microbes (e.g. bacteria and
fungi involved in decomposition or N mineralisation); yet our
growing awareness of the impacts of disease in living primary
producers suggests that incorporating microbial infection in
the living hosts (e.g. allocation of C or nutrients to growth vs
defence, reduced photosynthetic rates, or increased respiration
or mortality) could substantially alter our predictions for C
and nutrient fluxes and the ecosystem services they underlie.
The unified framework presented here provides a mechanism
for explicit integration of the fields of disease and ecosystem
ecology, opening the door to new questions and insights into
the interplay of disease dynamics, ecosystem processes and
changing biogeochemical cycles.
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