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Appendix S1: Model formulation and parameter estimation details 

A. Model formulation. We developed the Ecosystem-Disease (ED) model to describe infection in a 
primary producer and feedbacks through both disease and ecosystem characteristics. While there are a 
variety of modeling approaches that incorporate coupled elemental cycles via organismal physiology 
(Rastetter 2011), we chose to use a Droop model formulation (Droop 1973) to allow for a flexible 
stoichiometric balance in the uptake and decomposition of carbon and nutrients. With this formulation, 
the uptake rate of one resource varies with the availability of the others and is constrained to match the 
requirements of the organism. In the current analysis, we use a forest ecosystem as our case study 
because of the existence of a well-studied analogous model (Multiple-Element-Limitation) intended to 
describe a deciduous forest ecosystem (Rastetter & Shaver 1992; Rastetter et al. 1997). The ED 
modeling approach represents a simpler alternative (e.g., no threshold functions) and includes fewer 
parameters than the MEL model approach (Rastetter & Shaver 1992; Rastetter et al. 1997) but yields 
similar equilibrium predictions (Appendix Table S2). By reducing the number of parameters necessary to 
describe healthy forest ecosystem dynamics, we are able to expand the model (nearly doubling the 
parameters) to track both susceptible and infected vegetation. Because the ED model structure differed 
from (Rastetter et al. 1997), similar parameters took on new meaning and units. Additionally, forest 
ecosystem models do not include estimates for parameters associated with disease, so we estimated 
parameter values for the ED model from a variety of sources. 

B. Parameter estimation. Photosynthesis and death. Growth rates via photosynthetic carbon capture for 
healthy vegetation of a deciduous hardwood forest have been estimated to be 585 g C m-2 y-1 (Fahey et 
al. 2005). Scaling this estimate to a forest stand (~12,000 g m-2) yields 0.048 y-1. We increased this 
estimate to parameterize a maximum growth rate (𝜇! = 0.075	y-1), and then assumed that infection 
reduces maximum growth rate by up to 25% (e.g.,(Bloomberg & Morrison 1989)); while we explored the 
model sensitivity to this value, we assumed a 7% reduction for most of our simulations. We used the 
estimate for the death rate of healthy vegetation (𝛿!=0.0412 y-1) as the sum of vegetative litter 
production for C and respiration from (Rastetter et al. 1997). While there was no estimate of the death 
rate of infected vegetation for these forests (𝛿" = 1.001 ∗ 𝛿!), we assumed that this parameter was 
slightly higher because, while leaves may be lost substantially faster on average than in healthy trees, 
woody tissue will likely be lost only slightly faster.  

Nutrient relations of vegetation. Growth occurs in the ED model as a function of the “cell quota” or the 
amount of nutrient (nitrogen) per unit of biomass (carbon) in the vegetation. We estimated the 
minimum cell quota for healthy trees (𝑞# =	439$% ) as the N:C ratio of wood as used by Rastetter 1997.  
While we had no data on the response of cell quota to nutrient availability in the ecosystem, because of 
flexible uptake and storage of nitrogen in trees (Lawrence 2001; Millard & Grelet 2010), we allowed 
more than a tripling for the maximum cell quota (𝑄#0 = 120$%) in response to N inputs, since we see 
substantial responses across taxa in (Bracken et al. 2014). To estimate the minimum cell quota for 
infected trees (𝑞" = 438.7$%), we assumed that infected tissues have slightly higher N content than 
uninfected, because pathogens generally have lower C:N than their plant hosts (e.g., (LeROY et al. 2011; 
Grimmett et al. 2012)). Further, we assumed that if infection changed the maximum cell quota, it would 
increase N (e.g., (Grimmett et al. 2012)), so we estimated that this value (𝑄"0) would be 25% higher than 
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(𝑄#0). The nutrient uptake rate of a deciduous forest has substantial uncertainty, but has been estimated 
as 31-171 kg N ha-1 y-1 (Groffman 2020) from which we estimated the specific nutrient uptake rate (N:C, 
𝑐! ) as a function of carbon at the scale of a forest stand (~12,000 g m-2) (Fahey et al. 2005) to obtain the 
range  0.00025 – 0.0059; we used an intermediate value, 𝑐! =0.00038, in our simulations. As with our 
estimate of cell quotas, we assumed that the specific nutrient uptake rate for infected vegetation (𝑐" =
1.001 ∗ 𝑐!) was slightly higher. The ED model formulation required an estimate of the half saturation 
constant for nutrient uptake, which we were able to estimate based on a review of half saturation 
constants (~0.003 N m-2) that included estimates for plant nutrient uptake (Mulder & Hendriks 2014). 
We assumed that this was the same for both healthy (𝑎!) and infected vegetation (𝑎"). 

Environmental carbon and nutrients. We parameterized this model with carbon and nitrogen, primarily 
because these were the elements for which most empirical data were available. While many ecosystems 
on Earth are being modified by significant anthropogenic nitrogen inputs (Galloway et al. 2004), and the 
model can be modified to include inputs and outputs of nitrogen, for the current modeling exercise, we 
model this as a closed system with no losses or gains of nitrogen. In contrast, we model carbon as being 
taken up at a rate modified by the nutrient relations of the vegetation (𝜇&(𝑄&), for 𝑖 = 𝑆, 𝐼). Estimates of 
carbon loss rates (𝜖!)	from natural system to e.g., CO2, dissolved organic carbon, or recalcitrant forms 
vary. While Rastetter 1997 assumed this parameter was zero, estimates of decomposition rates of 
branches and litterfall range from .145 to .58 y-1 (Fahey et al. 2005). We used a value intermediate to 
these estimates, 𝜖! = 0.0648 per year. Because pathogen infection can slow decomposition of some 
deciduous hardwood leaves (Grimmett et al. 2012), we assume that carbon loss from infected 
vegetation (𝜖" = 1.1 ∗ 𝜖!) is slightly higher than healthy vegetation. The annual rate of net nitrogen 
mineralization was estimated from two values. Forest nitrogen estimates from Hubbard Brook range 
from 626 g m-2 to 820 g m-2 (Yanai et al. 2013), and net nitrogen mineralization rates range from 3.1 to 
17.1 g m-2 y-1 (Groffman 2020). The per year rate estimate from the quotient of these ranges from 
0.0038 to 0.027, and we used a parameter value that falls between these (𝑟=0.0084). 

Transmission rates. We assume that transmission depends on the N:C of infected hosts with a saturating 
Michaelis Menten form with maximum transmission rate 𝛽?  and half saturation constant 𝜅. In order to 
parameterize the maximum transmission rate 𝛽? , we considered a simplified SI model of susceptible and 
infected vegetation with biomass in terms of g C m-2 with a constant total population density of 
S+I=N=12,006 g C m-2 (Fahey et al. 2005): 

𝑆'(𝑡) = −𝛽?𝑆𝐼, 𝐼'(𝑡) = 𝛽?𝑆𝐼.	 

Solving this system yields an expression for  𝛽? = %
()
ln	 E!(+)(($!()))

!())(($!(+))
F.  

We assumed initial conditions with one infected tree with bark disease (e.g. beech bark disease, Dutch 
elm disease), where 6.4% of the tree’s C is bark (Fahey et al. 2005), and all of the bark is infected. Here, 
we assume a tree has 7 million grams of carbon total thus resulting in 4.28 ∗ 10$-	g C of bark.   
Empirical estimates of rates of spread of diseases across North American forests range from 4.2 to 57 
km/year (Evans 2016). We consider these two extreme rates of spread to estimate a range for 𝛽? . First 
consider a forest with area 4200 m2 and assume the initially infected population is 4.28 ∗ 10$-	g C/4200 
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m2. For the second case, we consider a forest with area 57000 m2 and an initially infected population is 
4.28 ∗ 10$-	g C/57000 m2. Considering ranges that yield in 15-50% of the bark per meter squared 
becoming infected after one year results in a range of 𝛽?	from 6.5 ∗ 10$. to 3.3 ∗ 10$/. The simulations 
throughout the manuscript use the value 𝛽? = 1.2 ∗ 10$-.  We considered empirical measurements of 
nitrogen induced changes in spore production of barley fungal pathogens (Jensen and Munk 1997) to 
parameterize the half saturation constant 𝜅. Jensen and Munk 1997 varied N supply from 30-240 mg N 
per pot on seedlings of spring barley inoculated with powdery mildew and observed variations in spore 
productions. Estimating the half saturation to occur between   70 and 120 mg N per pot and considering 
their pots had surface area of 182 cm2 yields a range of 3.8 - 6.5 g N m-2. Assuming a forest stand size of  
(~12,000 g C m-2) (Fahey et al. 2005) with the assumption that only 5-10% of this C produces spores 
yields a possible range for  𝜅 of 0.003 – 0.01 g N per g C. We used 𝜅 = 0.009 throughout the 
simulations.  

Aligning with earlier work. After estimating parameter values from the empirical literature, we ran the 
ED model to estimate equilibria, then compared the equilibrium values we obtained to those generated 
by the MEL model parameterized for a deciduous forest (Rastetter et al. 1997). While empirical 
literature provided realistic ranges for each parameter, we sought to compare the dynamic influence of 
disease in an ecosystem. Therefore we  chose values inside their respective ranges such that the ED 
model parameters, in the absence of infection, generated equilibrium solutions that closely matched 
(Rastetter et al. 1997) (see Table 2 for parameter values). Thus, while the ED model structure differs, the 
steady state values (in the absence of disease) closely resemble those of a well-known forest ecosystem 
model (Rastetter et al. 1997) (Appendix Table S1). 

Appendix Table S1. Comparison of steady states from the forest model of (Rastetter et al. 1997) with 
the steady states of the current model using the parameters from Table 1 (main text), demonstrating 
that the values in the ED uninfected forest model is quantitatively comparable to this earlier work. 
 Plant C 

(kg C m-2) 
Plant N 
(g N m-2) 

Soil Organic 
C (kg C m-2) 

Soil Organic 
N (g N m-2) 

Plant C:N 
(g C : g N) 

Soil Inorganic 
N (g N m-2) 

Rastetter et 
al. with 
doubled C02 

22.57 111.3 13.24 519.90 202.80 0.78 

Rastetter et 
al. without 
doubling C02 

22.00 110.00 13.00 520.99 200.00 0.88 

ED model  
(no disease) 

21.31 107.02 13.51 524.13 199.12 0.84 

 

C. Parameter sensitivity. While all parameter values were taken from empirical literature and disease-
free model results were comparable to previous modeling efforts, we note the significance of the ED 
model predictions are largely qualitative rather than quantitative. Indeed, equilibria predictions are 
sensitive to variations in parameters (Figs. 4 and 5). Transient dynamics are also sensitive to variations in 
parameters (not shown). The ED model formulation and parameterization efforts provide a starting 
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point that highlights the impact of coupling ecosystem with disease dynamics; however, thorough 
parameter sensitivity analyses should be conducted before using this model for quantitative predictions. 
Appendix S5 provides a global parameter analysis for the case study of the model parameterized for this 
forest ecosystem. 

Appendix S2: Model implementation and simulations 

A. Model simulations were performed using MATLAB and the built in ordinary differential equation 
solvers, ode45 and ode23s. Initial conditions were taken to match initial conditions and equilibrium 
scenarios used in (Rastetter et al. 1997) with a small initial amount of infected vegetation;  𝑆+ =
2200, 𝐼+ = 0.0005, 𝐷!+ = 1300	𝐷"+ = 0, 𝑅!+ = 521, 𝑄!+ = 190$%, 𝑄"+ = 190$%, 𝑁+ = 1.  Simulations 
of the model without disease assigns a zero infected population, 𝐼+ = 0.	 

B.  Initial amount of infected carbon. With 
the current parameterization to describe a 
250-year old deciduous forest, the duration 
of the ED model’s transient dynamics was 
fairly insensitive to the initial amount of 
infected vegetation carbon. For example, 
with a 1000-fold increase in the initial 
amount of vegetation carbon that is infected 
(𝐼+ = 0.5) compared to the initial infection 
value assumed in the main text, the transient 
dynamics still last for 200 years, compared to 
the 300 year duration of transient dynamics 
produced when the value of initial infected 
vegetation carbon is 0.0005 (value assumed 
in the main text; Appendix Fig. S1).  

C. Simulating scenarios with no feedback. Simulations to mimic more traditional SI modeling that do 
not account for ecosystem dynamics and feedbacks (Fig. 3, main text) assumed that the C:N ratios of the 
vegetation are constant. This was implemented by assigning a single invariant value for C:N. These 
equations are shown in Appendix Table S2. We simulated two scenarios, one with equal stoichiometric 
ratios for susceptible and infected (𝑄! = 𝑄" = 190$%; results not shown) and another with different 
values for susceptible and infected, assigned based on the equilibrium values (𝑄! = 200$%, 𝑄" = 180$%; 
Fig. 3). 

D. Impact of the range of predicted transmission values. To explore the impact of the range of variation 
in transmission (due to dependence on nutrient feedbacks) shown in Fig. 3c, we ran simulations at 
several different values for infected vegetation C:N ratio, while assuming vegetation C:N was constant 
within a simulation, and observed its influence on disease prevalence (black lines in Fig. 3d). Infected 
vegetation C:N ratios from 𝑄" ∈ (179.5$%, 188$%) correspond to transmission rates of the range 
𝛽(𝑄") ∈ (4.46 − 4.58) ∗ 10$.). For these simulations, we also fixed the healthy vegetation C:N ratios to 
be equal to those of the infected vegetation, i.e. 𝑄! = 𝑄". The blue lines in Fig. 3d consider scenarios  

 

Appendix Fig. S1. Model sensitivity to initial amount 
of infected carbon. 
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without any elemental feedbacks. 
Here, vegetation C:N ratios are fixed 
(𝑄! = 𝑄" = 190$%)	but transmission 
is varied within the same range 
through slight variations in 𝛽?.	In both 
scenarios, 𝛽 = 4.42 ∗ 10$. is 
denoted by dotted curves, 𝛽 = 4.49 ∗
10$. dashed curves, and, 𝛽 = 4.56 ∗
10$. solid curves. 

 E. Long transient dynamics. Figs 4 
and 5 in the main text show 
equilibrium solutions of the model as 
parameters vary. Because transient 
dynamics for some components of 
the model were extremely long, 
except where noted, the values 
shown in graphs are the solutions to 
the model at 10,000 years.  

 F. Impact of total system nitrogen. 
Fig. 5 varies the total amount of 
nitrogen in the system. The model 
assumes the system is closed for 

nitrogen. To examine the effect of total ecosystem nitrogen on disease and ecosystem variables, we vary 
the total amount of nitrogen and track the pools in soil and vegetation. The initial conditions used in a 
multiple element forest ecosystem model (Rastetter et al. 1997) assumed the nitrogen was distributed 
across the systems such that 0.1% of the total nitrogen in the forest was in the form of soil inorganic N, 
81.7% was preset as soil organic C, and 18.2% was contained in live vegetation. To remain comparable 
to the earlier work, we assigned these proportions for initial conditions as we varied the total amount of 
nitrogen. 

Appendix S3: Virulence effects on equilibria 

 We investigated how the dynamics of the system change to variations in virulence, where virulence is 
the percent reduction in the maximum growth rate of infected hosts vs susceptible hosts. The model 
solutions approach an equilibrium value, but although the stability of this equilibrium appears robust to 
changes in virulence, the value of the equilibrium changes. Furthermore, for small variations in virulence 
(6.85-7.1%) we see significant changes in the equilibrium value (Appendix Fig. S2) that appear to be 
robust to variations in initial conditions (not shown). Life history traits (e.g. growth rates) also were 
identified as important parameters in a full parameter sensitivity analysis for the forest system case 
study (Appendix S5). 

Appendix Table S2. Model equations for uncoupled model in 
Fig. 3, main text. 
𝑑𝑆
𝑑𝑡 = 𝜇!(𝑄!)𝑆 + 𝜇"(𝑄")𝐼+,,,,,-,,,,,.

#$%&'(
− 𝛽(𝑄")𝑆𝐼+,-,.

)*+,-')%*
− 𝛿!𝑆2

.,/'(
 

𝑑𝐼
𝑑𝑡 = 𝛽(𝑄")𝑆𝐼+,-,.

)*+,-')%*
− 𝛿"𝐼3

.,/'(
 

𝑑𝐷!
𝑑𝑡 = 𝛿!𝑆2

.,/'(	$,1,/2,.	3
− 𝜖!𝐷!6

3	1%22
 

𝑑𝐷"
𝑑𝑡 = 𝛿"𝐼3

.,/'(	$,1,/2,.	3
− 𝜖"𝐷"6

3	1%22
 

𝑑𝑅!
𝑑𝑡 = 𝛿!𝑆𝑄!+-.

.,/'(	$,1,/2,.	4
− 𝑟𝑅!2

4	$,-5-1)*#
 

𝑑𝑅"
𝑑𝑡 = 𝛿"𝐼𝑄"+-.

.,/'(	$,1,/2,.	4
− 𝑟𝑅"3

4	$,-5-1)*#
 

𝑑𝑄!
𝑑𝑡 = 0 

𝑑𝑄"
𝑑𝑡 = 0 

𝑑𝑁
𝑑𝑡 = 0 

 
Where  
 

𝜇)(𝑄)) = 𝜇6; <1 −
7!
8!
>    (For Blue lines in Fig. 3d  𝜇) = 0.0401 held constant) 

𝛽(𝑄") =
𝛽@𝑄"
𝜅 + 𝑄"
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Appendix Fig. S2. Model sensitivity to variations in virulence. 

 

Appendix S4: Elasticity Index of the Basic Reproductive Number 

The expression for the basic reproductive number is:  

𝑅+ =	
𝛽(𝑄&∗)𝑆∗

𝛿"
=

𝛽?𝑄"∗𝑆∗

(𝜅 + 𝑄"∗)𝛿"
	. 

This clearly depends on the susceptible host population size at the disease-free equilibrium (𝑆∗) as well 
as transmission rate, which is a function of the infected N:C ratio at the disease-free equilibrium, 𝑄"∗. 
Both of these disease-free equilibrium values depend on N supply. Varying total N in the system, we see 
a critical value of total N where 𝑅+ becomes greater than one. The disease cannot persist if N is below 
this critical threshold. In Figure 5a of the main text, two different terms of the expression for 𝑅+ are 
plotted separately,  𝛽(𝑄"∗)/𝛿" and 𝑆∗	to see the relative impact of these two terms. We scaled the 
values by a factor of 10,000 for easier visualization. It is clear from the steep slope of  𝑆∗, that the 
population size is a dominant factor when disease dynamics are driven by total N. Below, we further 
explore these factors with elasticity indexes.  

Normalized sensitivity indexes, called elasticity indexes of 𝑅+, are useful measures of the relative 
importance of different factors responsible for transmission (van den Driessche 2017). The elasticity 
index of 𝑅+ with respect to 𝑆∗ is defined as  

Υ!∗
1: =	

𝜕𝑅+
𝜕𝑆∗

×
𝑆∗

𝑅+
= 1 

and the elasticity index of 𝑅+ with respect to 𝑄" is defined as  

Υ2;
1: =		 31:

32;
× 2;
1:
		= 		4

<(2;)
4(2;)

𝑄". 
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 The assumptions built into this model, where 
𝛽(𝑄") is an increasing, saturating function of the 

form 𝛽(𝑄")	 =
452;
672;

 result in an elasticity index 

Υ2;
1: = 6

672;
 which is plotted in Appendix Fig. S3 as 

total N varies.  Here, Υ2;
1:  increases slightly as Total 

N increases, but is always less than  Υ!∗
1: = 1.	It is 

important to note that the slope and magnitude of 
this elasticity index for 𝑄" depend on the 
transmission function 𝛽. While, these variations in 
the elasticity of R0 with respect to QI appear small 
for this parameterization of our model, we note it 
may play a bigger role under different conditions 
when the model is parameterized for different 
types of ecosystems.  

Appendix S5: Parameter Sensitivity Analyses 

We performed a global parameter sensitivity analysis for the model as parameterized for a forest 
ecosystem using Latin Hypercube Sampling (LHS) with the statistical Partial Rank Correlation Coefficient 
(PRCC) technique. LHS is a stratified Monte Carlo sampling method without replacement giving an 
unbiased selection of parameter values. To assess the relative importance of each parameter, PRCC 
offers a statistical technique that is appropriate when the parameters have a monotonic relationship 
with the output measures (Marino et al. 2008). We considered 1) live host carbon density, 2) infection 
prevalence, and 3) soil inorganic N levels after 10,000 years as output measures and explored parameter 
ranges given in Appendix Table S3 with 5,000 LHS samples.  We calculated the PRCC values (Appendix 
Fig. S4) since the majority of these parameter values had monotonic relationships with the output 
measures (Appendix Fig. S5).  

 
Appendix Fig. S3. The slope and magnitude of 
the elasticity index of R0 with increasing total N 
in the system. 

a. PRCC values for live host density 
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The only non-monotonic 
relationship was between di 
and soil inorganic N, where we 
investigated the sensitivity in 
truncated monotonic ranges 
and obtained similar results, 
following the method described 
in Gomero (Gomero 2012).  

In general, for a given 
parameter the higher the PRCC 
value is in magnitude the more 
influential that parameter is to 
the output measure. A positive 
PRCC value means an increase 
in that parameter results in an 
increase in the output measure, 
whereas an increase in a 
parameter with a negative PRCC 
values yields a decrease in the 
output measure. Following 
Marino et al. (Marino et al. 
2008) we performed a z-test on 
the resulting PRCC values and 
verified that, in general, higher magnitude PRCC values corresponded with a stronger influence on the 
output measure. 

 Our parameter sensitivity analysis identified life-history traits (maximum growth rates and 
death rates) as well as stoichiometric traits (minimum N:C ratios) as important parameters across all 
three output measures. Infection prevalence was also sensitive to the maximum transmission rate.  

[Appendix Fig. S5 on next page] 

 

 

 

 

 

 

 

b. PRCC values for prevalence  

 
c. PRCC values for soil inorganic N 

 
Appendix Fig. S4. Parameter sensitivity analysis results for Latin 
Hypercube Sampling (5,000 samples), parameter ranges and baseline 
values given in Appendix Table S3, for above output measures at 
10,000 years. PRCC values marked as ns are not significant (P>0.05). 
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a. Monotonicity plots for live host density 

 
b. Monotonicity plots for prevalence  
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