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APPENDIX 13 

 In this appendix, we present supplementary methods and results. First, we provide 14 

additional details about the experiment. We report the formulas for nutrient solutions (Table S1), 15 

describe the maintenance of aphid and virus cultures in the lab, and describe a simple experiment 16 

that shows that the dispersal of aphids away from an initial piece of host tissue does not depend 17 

on the number of hours that they were attached to it (Fig. S1). We also graphically depict our 18 

spatial sampling regime for the arenas (Fig. S2) and describe details of our standard laboratory 19 

protocol for diagnosing plant infections.  20 

Next, we provide additional details about the models and model fitting. We show 21 

graphically that the lagged dispersal model converges onto the non-spatial model as dispersal 22 



rate (d) increases (Fig. S3). We derive analytical equilibria for the non-spatial and lagged 23 

dispersal models, and approximate equilibria of the traveling wave models with simulations (Fig. 24 

S4). Then, we define the likelihood function used to fit the models to the data, and we confirm 25 

the performance of the model fitting machinery by testing it on simulated data with known 26 

underlying parameters (Fig. S5). We graphically show each spatial model fit to one treatment of 27 

the experiment, including the simplified non-spatial model (model 1F), the best overall lagged 28 

dispersal model (model 2A), and the analogous travelling wave model (model 2F; Fig. S6). We 29 

also report the fitted parameters for each of these models (Table S2). Finally, we plot likelihood 30 

surfaces for all pairwise combinations of the parameters r, K, and d in the best overall model 31 

(Fig. S7).  32 

 33 

Nutrient solutions 34 

 We watered plants in the experiment with modified Hoagland’s nutrient solutions 35 

(Hoagland and Arnon 1950). Concentrations of both nitrogen (as ammonium nitrate) and 36 

phosphorus (as monopotassium phosphate) corresponded to 0.1% (treatments with low resource 37 

supply; -R) or 5% dilutions (treatments with high resource supply; +R) of the original recipe. 38 

Concentrations of all micronutrients and macronutrients are tabulated below (Table S1). 39 

 40 

  41 



Table S1. Nutrient solutions.  42 

Compound Formula Concentration (µM) 

potassium sulfate K2SO4 1250 

magnesium sulfate MgSO4.7H2O 1000 

calcium sulfate CaSO4·2H2O 2000 

potassium chloride KCl 25 

boric acid H3BO3 12.5 

magnesium sulfate MnSO4·H2O 1 

zinc sulfate ZnSO4·7H2O 1 

copper sulfate CuSO4·5H2O 0.25 

molybdic acid H2MoO4·(H2O) 0.25 

ferric sodium EDTA  NaFeEDDHA (6% Fe) 10 

monopotassium phosphate KH2PO4 1 or 50* 

ammonium nitrate NH4NO3 7.5 or 375* 

* depending on nutrient treatment: low (-R) or high (+R) resource supply 43 

 44 

Virus maintenance  45 

 The virus (CYDV-RPV) was originally isolated by the laboratory of Dr. Stewart Gray 46 

from cereal crops in New York state (Cornell University, Ithaca, NY). We have continuously 47 

maintained this strain of RPV by transferring ~25 viruliferous aphids (R. padi) to new cohorts of 48 

cultivated oats (A. sativa) every ~3 weeks since 2017. We maintained these cultures of plants, 49 

aphids, and viruses in a separate room from the experimental arenas, but under similar conditions 50 

(23°C; 16:8 light:dark; 2x 40 W cool white fluorescent bulbs). These plants were grown in 51 

Sunshine MVP potting soil (Sun Gro Horticulture) in 15 x 15 cm pots and watered twice per 52 

week with tap water. To obtain infected plant tissue for the experiment, we removed all aphids 53 

from several infected plants with 5-10 sprays (6-15 ml) of 1.6% dilute Fulfill insecticide 54 



(Adama, USA). This pesticide prevents aphids from feeding for up to two months. It does not 55 

interfere with viral infections within host tissues, but it allows infected plants to grow for longer 56 

periods without being infested by aphids. Following standard laboratory procedure, we waited 57 

several months before harvesting this infected plant tissue for our experiment. This lag period 58 

ensured that aphids could feed again on the infected plant tissue and acquire the virus. 59 

 60 

Dispersal of aphids away from initial host tissues 61 

We used slightly different methods to add vectors to the experimental arenas with (+D) 62 

and without pathogens (-D), but this difference is unlikely to have biased our results. For 63 

treatments without the virus, we added the aphids to empty vials, starved them for two hours, 64 

added uninfected plant tissue, waited ~3 hours for the aphids to attach to the tissue, and then 65 

added the tissue and aphids to the center of their experimental arenas. We treated the infectious 66 

aphids very similarly, but waited 48 hours for them to attach to RPV-infected tissue and acquire 67 

the virus (Gray 2008) before adding them to their arenas. We were concerned that this slight 68 

difference in timing (3 versus 48 hours spent in the vial attached to the plant tissue) could have 69 

influenced the dispersal of aphids away from this initial tissue. Therefore, we conducted a simple 70 

complementary experiment.  71 

This complementary experiment crossed the duration of time in the vial (3 or 48 hours) 72 

by presence of the virus in the plant tissue (healthy or infected with RPV). We replicated each 73 

combination of treatments 5 times, for a total of 20 trials. For each trial, we added 10 aphids to a 74 

vial, starved them for two hours, added plant tissue (either uninfected or infected with RPV), and 75 

allowed the aphids to attach and feed (either 3 or 48 hours). We then placed the tissue and aphids 76 



on the center of a 15 x 15 cm piece of paper with sticky tape along the perimeter. We placed the 77 

paper on top of a moist Kimwipe and sealed the entire trial in a plastic container to maintain 78 

humidity. We checked the experiment daily and counted the aphids that remained on the plant 79 

tissue and the aphids that had dispersed. We used a linear model to test whether the cumulative 80 

proportion of dispersing aphids depended on the time since the plant tissue was placed on the 81 

paper (time since addition), the time that the aphids had remained attached to the plant tissue in 82 

the vial (3 or 48 hours), infection status of the plant tissue (healthy or infected with RPV), and 83 

two-way interactions between each treatment and the time since addition. The only significant 84 

effect was an increase in the cumulative proportion of dispersing aphids over time (p < 1x10-12). 85 

All aphids in all treatments dispersed away from the initial plant tissue within two days. Neither 86 

time in the vial nor infection status altered this rate of dispersal (Fig S1). Thus, the difference in 87 

the number of hours that aphids spent in vials is unlikely to have biased results in the 88 

experimental arenas.  89 

Fig. S1. All aphids dispersed away 90 

from plant tissues within two days, and 91 

time in the vial did not affect this rate 92 

of dispersal. The complementary 93 

experiment crossed time in the vial 94 

(upward triangles =  3 hours; 95 

downward triangles = 48 hours) with 96 

infection status of the plant tissue 97 

(open triangles = healthy; closed 98 

symbols = infected with RPV).  99 



Graphical depiction of the sampling regime  100 

Fig. S2. Hosts were sampled from randomized 101 

spatial gradients ranging from the centers of the 102 

arenas outward. Aphids were added to the center 103 

of each arena (I). Each week, four hosts were 104 

sampled from each arena, with one host 105 

randomly selected from each of four concentric 106 

rings (labeled II, III, IV, and V) expanding 107 

outward from the center. No plants were sampled 108 

from the innermost four slots (I). Color and 109 

labeling scheme matches data plotted in Figs. 3 & S6.  110 

 111 

Diagnosing infections from plant tissues 112 

 We diagnosed infections in plant hosts following standard laboratory procedures. In 113 

summary, we flash-froze plant tissues, extracting total RNA with TRIzol® Reagent 114 

(InvitrogenTM) and chloroform, synthesized cDNA with generic primers, amplified virus cDNA 115 

with RPV-specific primers, and used gel electrophoresis to visually diagnose whether plants 116 

were infected.  117 

We extracted total RNA following a standard laboratory protocol. Immediately after 118 

sampling, we cut 0.04-0.07g tissue from each plant (from the newest leaf, if possible) and flash-119 

froze it in liquid nitrogen. Later, we cut these frozen tissue samples into 1-2 mm pieces, added 120 

them to microcentifuge tubes containing 500 μl TRIzol®, and pulverized them with steel BBs in 121 



a bead beater at 10 second intervals until fully homogenized (Mini-Beadbeater-16 Biospec 122 

Products). Then we added 100 μl chloroform to the tubes, mixed by inverting (15 s), and cold-123 

centrifuged (4 C, 7,000 g, 15 min). We transferred the aqueous phases to new tubes containing 124 

100 μl isopropanol, mixed by inverting, and cold-centrifuged again (7,000 g, 10 min). Next, we 125 

discarded the supernatant, added 1 ml 75% ethanol, briefly vortexed our samples, cold-126 

centrifuged for a third time (4 C, 7,000 g, 5 min), and discarded the supernatant. Finally, we 127 

allowed the pellets containing RNA to dry (minimum 30 min) before dissolving the pelleted 128 

RNA in 20 μl RNase-free water and freezing these total RNA samples for future use (-20 C).  129 

We synthesized complementary DNA (cDNA) from the total RNA samples using reverse 130 

transcription polymerase chain reactions (RT-PCR). We mixed 4.5 μl of RNA solution from each 131 

sample and 0.5 μl of random hexamers (1ug/ul) and preheated these mixtures (70 C, 5 min) in a 132 

thermocycler (S1000TM Thermal Cycler [Bio-Rad]). Each RT-PCR reaction (20 ul) contained 5 133 

μl of this random hexamer/RNA mixture, 4 μl 5x Reaction Buffer (ImProm-IITM Reverse 134 

Transcriptase [Promega]), 1.2 μl MgCl2 (25mM), 1 μl dNTPs (10mM), 0.5 μl Recombinant 135 

RNasin® Ribonuclease Inhibitor (Promega; 40U/ul), 1 μl (ImProm-IITM Reverse Transcriptase 136 

[Promega]), 7.3 μl RNase free water, and 0.034 μl T4 Gene 32 Protein (New England BioLabs). 137 

Thermocycler conditions for cDNA synthesis were 5 min at 25 C, 60 min at 45 C, and finally 15 138 

min at 70 C.  139 

Next, we amplified viral cDNA with RPV-specific primers via PCR. Each reaction (20 140 

ul) included 2 μl 10x buffer, 2.8 μl MgCl2 (25mM), 10.4 μl nanopure water, 0.8 μl each forward 141 

(5' - ATG TTG TAC CGC TTG ATC CAC - 3') and reverse (5' - CTG CGT TCT GAC AGC 142 

AGG - 3') primers (10 uM), 0.8 μl dNTPs (10 mM), 0.4 μl HotStarTaq® DNA Polymerase 143 

(Qiagen), and 0.068 μl T4 Gene 32 Protein (New England BioLabs). The thermocylcer program 144 



included an initial heating phase (95 C, 15 min), a step-down phase (95 C [30 s], 59 C [30 s], and 145 

72 C [60 s] with subsequent annealing iterations reduced from 59 C to 54 C in 1 C increments), 146 

and 29 cycles (95 C [30 s], 54 C [60 s], and 72 C [60 s]). Finally, we used gel electrophoresis to 147 

visually diagnose infections. We loaded the amplified DNA samples into 2.0% gel (UltraPure 148 

Agarose-1000, Thermo Fisher Scientific) mixed with SYBR Safe DNA Gel Stain (InvitrogenTM) 149 

and visualized with Gel DocTM EZ Imager (Bio Rad). 150 

 151 

Convergence of the lagged dispersal and non-spatial models 152 

Figure S3. The lagged dispersal model 153 

converges onto the non-spatial model as 154 

dispersal rates increase. As dispersal rates 155 

increase (colored lines), differences in vector 156 

abundance between donor hosts (dashed 157 

lines) and receiver hosts (solid lines) become 158 

smaller. When dispersal rates are ~0.5 day-1 159 

(blue lines) they become indistinguishable. At 160 

this point, the lagged dispersal model 161 

converges on the non-spatial model (thick 162 

gray line), because so much movement of vectors among hosts homogenizes spatial dynamics. 163 

Since we were not tracking the movement of individual aphids in our experiment, dispersal rates 164 

exceeding ~0.5 day-1 in the lagged dispersal model were indistinguishable and meaningless. 165 

Therefore, we set an upper limit of 0.5 on the estimation of the parameter d. Other parameters: 166 

K=150 vectors host-1, r=0.2 day-1, βVH=0.001 hosts vector-1 day-1, βVH=0.68 arenas host-1 day-1. 167 



Equilibria of the models 168 

 In the non-spatial and lagged dispersal models, all hosts eventually become infected and 169 

all vectors reach their carrying capacity. Changes in the density of susceptible hosts (eq. 3) and 170 

infected hosts (eq. 4) both become zero when susceptible hosts are depleted (Si=0). Thus, 171 

expressions for equilibrial densities (denoted with *) of susceptible (S) and infected hosts (I) are 172 

  𝑆𝑖
∗ = 0   𝐼𝑖

∗ = 𝐻𝑖    eq. S1 173 

where Hi is the total density of hosts in spatial class i (Hi = Si + Ii). The equilibrial abundances of 174 

noninfectious (V) and infectious vectors per host (W) are slightly more complicated. Adding eqs. 175 

1 & 2 creates an equation for the change in the abundance of total vectors per host 176 

𝑑𝑋𝑖

𝑑𝑡
= 𝑟𝑋𝑖 (1 −

𝑋𝑖

𝐾
) − 𝑑𝑋𝑖 + 𝑑(𝑋𝑚,𝑖)     eq. S2 177 

where Xi is the sum of noninfectious and infectious vectors (Xi = Vi + Wi and Xm,i = Vm,i + Wm,i). 178 

Setting this equation to zero reveals a general expression for equilibrial vector abundance: 179 

𝑋𝑖
∗ = 𝐾 + 𝐾

𝑑

𝑟
(

𝑋𝑚,𝑖
∗

𝑋𝑖
∗ − 1)      eq. S3 180 

For the non-spatial model, 𝑉𝑚,1 = 𝑉1 and 𝑊𝑚,1 = 𝑊1 (eq. 5a-b in the main text). It follows that 181 

𝑋𝑚,1
∗ = 𝑋1

∗ and consequently, the equilibrial abundance of vectors per host (eq. S3) collapses to:  182 

𝑋1
∗ = 𝐾      eq. S4 183 

which unsurprisingly recapitulates simple (i.e., non-spatial) logistic growth.  184 

For lagged dispersal, we set eq. S2 equal to zero for both donor (X1) and receiver classes 185 

(X2) simultaneously:  186 

𝑟𝑋1
∗ (1 −

𝑋1
∗

𝐾
) − 𝑑𝑋1

∗ + 𝑑(𝑋𝑚,1
∗ ) = 0 = 𝑟𝑋2

∗ (1 −
𝑋2

∗

𝐾
) − 𝑑𝑋2

∗ + 𝑑(𝑋𝑚,2
∗ )  eq. S5 187 



Since the immigration terms are identical for donor and receiver classes, 𝑑𝑉𝑚,1
∗ = 𝑑𝑉𝑚,2

∗  and 188 

𝑑𝑊𝑚,1
∗ = 𝑑𝑊𝑚,2

∗  (eq. 6a-b in the main text), it follows that 189 

𝑋𝑚,1
∗ = 𝑋𝑚,2

∗ = 𝑋1
∗ 𝐻1

𝐻1+𝐻2
+ 𝑋2

∗ 𝐻2

𝐻1+𝐻2
     eq. S6 190 

 191 

Substituting this equality into equation S5 makes it clear that an equilibrium exists when vectors 192 

on both donor and receiver hosts reach the same equilibrial carrying capacity, K:  193 

𝑋1
∗ = 𝑋2

∗ = 𝐾      eq. S7 194 

Thus, equilibria of the lagged dispersal and non-spatial models are identical. 195 

However, in the travelling wave model, extremely high dispersal rates can cause vectors 196 

to reach different equilibrial densities on different spatial classes of hosts. In extreme scenarios, 197 

hosts in earlier spatial classes can even remain uninfected. These effects arise if vectors emigrate 198 

out of the early spatial classes faster than they reproduce. These unique qualities of the travelling 199 

wave model are enabled by its reflecting boundary conditions and asymmetric dispersal (i.e., 200 

inner hosts receive fewer immigrants than outer hosts). We made these assumptions of reflecting 201 

boundaries, because they seemed most likely to capture spatial dynamics in the experiment. 202 

Because equilibria of the travelling wave model are less tractable than for the non-spatial and 203 

lagged dispersal models, we explore them with simulations (Fig. S4) rather than analytically.  204 



 205 

Figure S4. Simulated equilibria of the travelling wave model. With low dispersal rates (top row; 206 

d=0.01 day-1) vectors in each class (Vi+Wi; colored lines; labeled 1-5) approach the carrying 207 

capacity K (gray dashed line) and all hosts become infected (infection prevalence [Ii/(Si+Ii)] 208 

approaching 1). With higher dispersal rates (d=0.1 day-1; second row), the hosts and vectors 209 

reach the same equilibria, but the first spatial class (i=1; red) reaches them more slowly. With 210 

even higher dispersal rates (d=0.5 day-1; third row), vector abundance and infection prevalence 211 

of the first spatial class remains at zero. This effect cascades to the second and third classes with 212 

even higher dispersal rates (d=1 day-1; bottom row). These results make sense: Extremely high 213 

dispersal rates and asymmetric movement due to reflecting boundaries cause vectors to leave the 214 



early classes faster than they can reproduce. Other parameters: K=150 vectors host-1, r=0.2 day-1, 215 

βVH=0.001 hosts vector-1 day-1, βVH=0.68 arenas host-1 day-1. Travelling wave models fit to the 216 

experimental data had dispersal rates ranging from 0.09 – 0.44 day-1 (consistent with the second 217 

and third rows). These models fit the data very poorly (Table 3).  218 

 219 

Model fitting 220 

We used maximum likelihood to determine parameters of the dynamical models that best 221 

predicted the observed plant infections (assumed to follow a Bernoulli distribution) and aphid 222 

abundances (assumed to follow a negative binomial distribution). Starting conditions of the 223 

model simulations matched the experimental design (without disease: non-spatial V=0.1, W=0, 224 

S=100, I=0; lagged dispersal V1=2.5, V2=0, W1-2=0, S1=4, S2=96, I1-2=0; travelling wave V1=2.5, 225 

V2-5=0, W1-5=0, S1=4, S2=12, S3=20, S4=28, S5=36, I1-5=0; with disease: swapping V1 and W1). 226 

The probability mass function for a Bernoulli variable x is: 227 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑥|𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥     eq. S8 228 

where p is the probability that x = 1, and 1-p is the probability that x = 0. We determined the 229 

probability of infection p for plant hosts with simulations of the dynamical models. We defined p 230 

as infection prevalence at a given spatial class of host (i) and time (t):  231 

𝑝𝑖,𝑡 =
𝐼𝑖,𝑡

𝑆𝑖,𝑡+𝐼𝑖,𝑡
       eq. S9 232 

We assumed that each observation was independent, for j = 1,...,J observations per spatial class (i 233 

= i0,…n) per time (t = 1,…T). The indexing varied by model (non-spatial: n = 1, T = 8, J = 20; 234 

lagged dispersal: n = 2, T = 8, J = 20 in the receiver class i = 2; travelling wave: n = 5, T = 8, J = 235 



5 in classes i = 2-5). The likelihood (L) of our joint infection data x, given parameters of the 236 

dynamical model, can therefore be written: 237 

𝐿(𝑥) = ∏ ∏ ∏ 𝑝𝑖,𝑡
𝑥𝑗,𝑖,𝑡(1 − 𝑝𝑖,𝑡)1−𝑥𝑗,𝑖,𝑡𝑇

𝑡=1
𝑛
𝑖=𝑖0

𝐽
𝑗=1   new eq. S10  238 

with the spatial class index starting at 1 for the non-spatial model (i0=1) and 2 for the lagged 239 

dispersal and travelling wave models (i0=2), since data were not collected from ring I (i.e., the 240 

centers) of the arenas.  241 

Similarly, we assumed that the abundance of aphids per plant followed a negative 242 

binomial distribution. The probability mass function for a negative binomial variable y, 243 

following the ‘alternative’ parameterization with a mean and overdispersion parameter 244 

(Carpenter et al. 2015), is 245 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑜𝑚𝑖𝑎𝑙 (𝑦|𝜇, 𝜃) = (𝑦+
1

𝜃
−1

𝑦
) (

𝜇

𝜇+
1

𝜃

)

𝑦

(
1

𝜃

𝜇+
1

𝜃

)

1

𝜃

   eq. S11 246 

where 𝜇 is the mean of the negative binomial distribution and 𝜃 controls its overdispersion 247 

relative to Poisson. The variance of a Poisson distribution equals its mean. This parameterization 248 

of the negative binomial distribution facilitates cases where variance exceeds the mean (i.e., 249 

cases of ‘overdispersion’), which is common in ecological count data (Ver Hoef and Boveng 250 

2007). The variance of this parameterization equals 𝜇 + 𝜇2𝜃. If 𝜃~0, this distribution converges 251 

to a Poisson (variance equals 𝜇); if 𝜃 > 0, the distribution is ‘overdispersed’, and the magnitude 252 

of its overdispersion is proportional to θ, weighted by the square of the mean 𝜇. We determined 253 

the mean of the negative binomial distribution 𝜇 with simulations of the dynamical model, and 254 

defined it as the total number of aphids per host at a given spatial class (i) and time (t):  255 

𝜇𝑖,𝑡 = 𝑉𝑖,𝑡 + 𝑊𝑖,𝑡      eq. S12 256 



We assumed that each observation of our aphid abundance data was independent, for j = 1,...,J 257 

observations per spatial class (i = i0,…n) per time (t = 1,…T). Therefore, the likelihood (L) of our 258 

joint aphid data y, given parameters of the dynamical model and the fitted overdispersion 259 

parameter 𝜃, can be written: 260 

𝐿(𝑦) = ∏ ∏ ∏ (𝑦𝑗,𝑖,𝑡+
1

𝜃
−1

𝑦𝑗,𝑖,𝑡
) (

𝜇𝑖,𝑡

𝜇𝑖,𝑡+
1

𝜃

)

𝑦𝑦,𝑖,𝑡

(
1

𝜃

𝜇𝑖,𝑡+
1

𝜃

)

1

𝜃
𝑇
𝑡=1

𝑛
𝑖=𝑖0

𝐽
𝑗=1     eq. S13 261 

with the spatial class index starting at 1 for the non-spatial model (i0=1) and 2 for the lagged 262 

dispersal and travelling wave models (i0=2). Finally, we assumed that the infection data and 263 

aphid data were independent to obtain an overall likelihood function:  264 

𝐿 = 𝐿(𝑥)𝐿(𝑦)     eq. S14 265 

 For computational tractability, we performed calculations on a log-transformed scale and 266 

therefore added the log-likelihoods instead of multiplying the untransformed likelihoods.  267 

 268 

Performance of the model fitting machinery 269 

We chose the optimizer “L-BFGS-B” for two reasons. First, the default optimizer in the 270 

package bbmle (method “Nelder-Mead”) converged on different solutions when we started with 271 

different initial guesses for parameter values. In contrast, the optimizer “L-BFGS-B” proved to 272 

be highly consistent regardless of initial parameter guesses. Second, an optimizer with box 273 

constraints (such as “L-BFGS-B”) allowed us to specify an upper limit on the parameter d 274 

(dispersal rate), which was important because arbitrarily large dispersal rates were 275 

indistinguishable from one another (Fig. S3).  276 



To further validate the performance on our model fitting machinery, we tested it against 277 

random data that we simulated from known underlying distributions. In short, we simulated the 278 

deterministic lagged dispersal model with known parameters (r=0.2 day-1, K=100 vectors host-1, 279 

d=0.2 day-1, βVH=0.005 hosts vector-1 day-1, βHV=0.68 arenas host-1 day-1) and then simulated 280 

random data around it that matched the structure of the actual data collected in the experiment 281 

(i.e., replication, times sampled, etc.). We simulated infection data as a Bernoulli process with 282 

probability of infection equal to infection prevalence in the deterministic model (
𝐼2

𝑆2+𝐼2
), and we 283 

simulated aphid abundance data as a negative binomial process with a mean equal to the 284 

abundance predicted by the deterministic model (𝑉2 + 𝑊2) and a reasonable degree of 285 

overdispersion (θ=0.3). We simulated 100 unique datasets and tested our model fitting 286 

machinery on each one. We found that the model fitting machinery successfully estimated the 287 

underlying parameters used to generate the simulated data with a high degree of precision (Fig. 288 

S5: r=0.2 day-1, K=100 vectors host-1, d=0.2 day-1, βVH=0.005 hosts vector-1 day-1, θ=0.3).  289 

 290 

Figure S5. Model fitting machinery performs well on simulated data. Dashed gray lines show 291 

underlying parameters used to simulate data. Black circles show mean parameters as estimated 292 

by the model fitting machery along with 95% confidence intervals.    293 



All three models fit to the experimental arenas 294 

 295 

Figure S6. All three models fit to experimental data. The main text displays the best overall 296 

model fit to all experimental treatments (Fig. 3) and reports AIC-based results of the model 297 

competition (Table 3). Here we show the simplified non-spatial model (model 1F), the best 298 

overall lagged dispersal model (model 2A), and the analogous travelling wave model (model 299 

2F), all fit to one experimental treatment (-R, +D: low resource supply, with disease). The lagged 300 

dispersal model provided the best overall fit to both B) aphid abundance and E) plant infections. 301 

A & D) The simplified non-spatial model fit decently well, but was inferior to lagged dispersal 302 

(ΔAIC = 31.4). C & F) The travelling wave model fit very poorly in comparison (ΔAIC = 354). 303 

Fitted parameters for each model shown here are listed in Table S2.   304 



Fitted parameters  305 

Table S2. Fitted parameters for vector demography, dispersal, and transmission from the 306 

simplified non-spatial model (model 1F), the best overall lagged dispersal model (model 2A), 307 

and the analogous travelling wave model (model 2F). Models fitted to data are displayed in 308 

Figs. 3 & S6. 309 

Vector trait Treatment Simplified 

non-spatial  

(model 1F) 

Best lagged 

dispersal 

(model 2A) 

Analogous 

travelling wave 

(model 2F) 

population growth rate, r 

(day-1) 

-R, -D 0.237 0.246 0.171 

-R, +D 0.158 0.212 0.110 

+R, -D 0.216 0.216 0.158 

+R, +D 0.180 0.180 0.126 

carrying capacity, K  

(vectors host-1) 

-R (+/- D) 98.6 90.3 125.8 

+R (+/- D) 156.9 156.9 204.4 

dispersal rate, d  

(day-1) 

-R, -D - 0.141 0.095 

-R, +D - 0.0112 0.444 

+R, -D - 0.486 0.088 

+R, +D - 0.5 0.437 

transmission coefficient, βVH 

(hosts vector-1 day-1) 

all 0.00539 0.00589 0.00452 

vector overdispersion, θ all 0.296 0.278 0.583 

 310 

Likelihood surfaces of parameters from the best overall model 311 

We inspected likelihood surfaces to investigate how the model fitting arrived at the best 312 

‘compromise’ of parameters r, K, and d (Fig. S7). These likelihood surfaces highlight potential 313 

statistical associations that can arise when fitting multiple parameters. For example, we were 314 

concerned that higher estimates of K may have forced compensatory lower estimates of r in the 315 

fertilized arenas. If such an association existed, the likelihood surface in r x K space could show 316 

a ‘ridge’ with likelihood peaking along a negative correlation between r and K. This type of 317 

surface would indicate that similarly high levels of likelihood were reached with either lower r 318 

and higher K, or higher r and lower K. In contrast, a ‘bullseye’ would indicate a single peak in 319 



the likelihood surface. We found ‘bullseye’ likelihood peaks in r x K space, but we found some 320 

evidence of ‘ridges’ in r x d space. Specifically, in the unfertilized arenas, higher estimates of r 321 

could be compensated by lower estimates of d (and vice versa), without sacrificing much 322 

likelihood. However, the range of reasonable values for both r and d still varied substantially 323 

among treatments (more than variation along the ‘ridges’ in the likelihood surfaces). Therefore, 324 

the effects that we detected of resources and disease on r, K, and d (Fig. 4 in the main text) seem 325 

robust to these statistical associations among parameter estimates.  326 

 327 

 328 

Figure S7. Likelihood surfaces. Columns show different treatments of the experiment; rows 329 

show each pairwise combination of the parameters r, K, and d. Colors show likelihood calculated 330 

with eq. S15 and the best overall model (model 2A; red=higher; blue=lower). Gradients of each 331 



parameter are centered at their estimate (Table S2) and extend 5% (for r), 10% (for K), or 50% 332 

(for d) in either direction. All other parameters are set to their fitted values in the best overall 333 

model (Table S2; model 2A). Top row: Likelihood surfaces showed robust single peaks for 334 

combinations of r and K. Middle row: Unfertilized arenas showed negative associations 335 

between r and d, but the range for both parameters is small relative to the differences among 336 

treatments (note axis scaling; Fig. 5 in the main text). In fertilized arenas, the likelihood surface 337 

became a ‘smear’ as d increased, because dynamics on donor and receiver hosts became 338 

arbitrarily similar (Fig. S3). Bottom row: Unfertilized arenas showed robust single peaks for 339 

combinations of d and K. Fertilized arenas showed similar ‘smears’ as d increased. 340 
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