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Abstract
1. The spread of many diseases depends on the demography and dispersal of arthro-

pod vectors. Classic epidemiological theory typically ignores vector dynamics and 
instead makes the simplifying assumption of frequency-dependent transmission. 
Yet, vector ecology may be critical for understanding the spread of disease over 
space and time and how disease dynamics respond to environmental change.

2. Here, we ask how environmental change shapes vector demography and disper-
sal, and how these traits of vectors govern the spatiotemporal spread of disease.

3. We developed disease models parameterised by traits of vectors and fit them to 
experimental epidemics. The experiment featured a viral pathogen (CYDV-RPV) 
vectored by aphids Rhopalosiphum padi among populations of grass hosts Avena 
sativa under two rates of environmental resource supply (i.e. fertilisation of the 
host). We compared a non-spatial model that ignores vector movement, a lagged 
dispersal model that emphasises the delay between vector reproduction and dis-
persal, and a travelling wave model that generates waves of infections across space 
and time.

4. Resource supply altered both vector demography and dispersal. The lagged disper-
sal model fit best, indicating that vectors first reproduced locally and then dispersed 
globally among hosts in the experiment. Elevated resources decreased vector popula-
tion growth rates, nearly doubled their carrying capacity per host, increased dispersal 
rates when vectors carried the virus, and homogenised disease risk across space.

5. Together, the models and experiment show how environmental eutrophication 
can shape spatial disease dynamics—for example, homogenising disease risk 
across space—by altering the demography and behaviour of vectors.

K E Y W O R D S

barley/cereal yellow dwarf virus, behaviour, disease ecology, dispersal, eutrophication, spatial, 
transmission, vector

1  | INTRODUC TION

The spread of vector-borne disease depends on the demogra-
phy, dispersal and behaviour of vectors. However, vector dy-
namics are often omitted from disease models for simplicity. For 

example, classic models assume that vector transmission is propor-
tional to the frequency of infections in host populations (Antonovics 
et al., 1995; Chan & Jeger, 1994; Keeling et al., 2007). Yet, arthro-
pod vectors are foraging animals, and new predictions can arise 
from models that incorporate their demography (Shaw et al., 2017;  
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Sota & Mogi, 1989), preferences among hosts (Kingsolver, 1987; 
Shoemaker et al., 2019), feeding behaviour (Madden et al., 2000), disper-
sal (Chamchod & Britton, 2011; Chao et al., 2013; Donnelly et al., 2019; 
Shaw et al., 2019) and interactions with natural enemies (Crowder 
et al., 2019). Thus, treating vectors as interacting members of ecologi-
cal communities rather than invisible agents of disease enriches general 
insights and may improve predictions for future outbreaks of disease.

Vector ecology may be especially critical for understanding spa-
tial disease dynamics and consequences of environmental change. 
The spread of any species over space and time depends on its repro-
duction and dispersal (Bjørnstad et al., 2002; Hastings et al., 2005; 
Skellam, 1951). For vectors, these processes also can govern the 
spread of infections. For example, diseases can spread faster when 
mosquitos (Russell et al., 2005), ticks (Walter et al., 2016), aphids 
(Irwin & Thresh, 1988) and other arthropod vectors (Evans, 2016) 
disperse farther. Consequently, variation in vector and/or host 
movement can create a variety of spatiotemporal patterns, rang-
ing from homogeneous disease incidence across space (Foley 
et al., 2016) to travelling waves of infection (Comeau & Dubuc, 1977; 
Cummings et al., 2004; Menkis et al., 2016). In addition to explain-
ing these spatial patterns, vector ecology is also a critical conduit 
through which environmental change can shape disease. For ex-
ample, the demography of vectors can respond to climate change 
(Githeko et al., 2000), land use change (Pope et al., 2005) and 

environmental eutrophication (Comeau & Dubuc, 1977; Schrama 
et al., 2018; Zehnder & Hunter, 2009). In a world undergoing rapid, 
multifaceted environmental change, incorporating such effects into 
disease forecasts is becoming increasingly important.

Despite the potential for environmental change to alter spatio-
temporal disease dynamics via vector demography and dispersal, few 
experiments track interactions among hosts, vectors and pathogens 
across space and time under differing environmental conditions. In 
animal systems, hosts and vectors (e.g. ticks or mosquitoes) are both 
mobile, and, for many hosts, creating and tracking experimental epi-
demics may be unethical or infeasible. For example, recapture rates for 
mosquitos are generally low (Marini et al., 2010; Russell et al., 2005), 
kissing bugs that vector Chagas disease are difficult to sample (Abad-
Franch et al., 2010) and contacts between ticks and hosts must often 
be inferred from infection data (Foley et al., 2016; Walter et al., 2016). 
In contrast, plant hosts are stationary, making them much easier to 
track. Moreover, many diseases in wild plants, agricultural crops and 
forests are transmitted by insect vectors (Comeau & Dubuc, 1977; 
Evans, 2016; Seabloom et al., 2013), and relevant environmental 
change (e.g. nitrogen deposition and eutrophication) can be easily ma-
nipulated for plant hosts via fertilisation. Thus, many plant–pathogen 
systems are well-suited to develop and test models that incorporate 
vector ecology into spatiotemporal theory for disease (Jeger et al., 
2018).

F I G U R E  1   Three models for the spread of vectors and disease among sessile hosts. Graphical depictions (left) illustrate the spread 
of vectors along a transect of five hosts (I–V) under three spatiotemporal scenarios: non-spatial vector dynamics (top), lagged dispersal 
(middle) and a travelling wave (bottom). Model simulations (right) track the abundance of vectors per host (sum of infectious [W] and 
non-infectious [V] vectors; black) and percent of hosts infected (%I; red) in each spatial class (i). Non-spatial: (a) Vectors reproduce 
synchronously and (b) all hosts belong to one spatial class (n = 1) with increasing vectors and infections over time. Lagged dispersal: 
(c) Vectors disperse from an initial ‘donor’ host (grey) to all ‘receiver’ hosts (green). (d) Hosts are split into two spatial classes (n = 2), 
with vectors and infections of the receivers (solid lines; i = 2) lagging behind the donors (dashed; i = 1). Travelling wave: (e) Vectors 
disperse along the transect of hosts in a wave. (f) Hosts are divided into five spatial classes (n = 5), with vectors and infections of each 
class (i) lagging behind the previous class (i − 1). Parameters: K = 150 vectors host−1, r = 0.2 day−1, d = 0.01 day−1, βVH = 0.001 hosts 
vector−1 day−1, βVH = 0.68 arenas host−1 day−1
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Here we develop mathematical models grounded in vector de-
mography and dispersal and fit them to experimental epidemics 
of a viral pathogen (B/CYDV) vectored by aphids Rhopalosiphum 
padi among grass hosts Avena sativa. In the experiment, we track 
the spread of vectors and infections across populations of 100 
hosts for 8 weeks (~4 to 5 aphid generations) under two rates 
of environmental resource supply (i.e. fertilisation of the host). 
Then we fit models to the data to ask whether elevated resource 
supply altered vector demography, dispersal or disease dynam-
ics. We contrasted the fit of three models (Figure 1). First, a null 
non-spatial model ignored vector movement. Second, a lagged 
dispersal model emphasised the lag between vector reproduction 
and dispersal. Third, a travelling wave model generated waves of 
infection across space. We found that the lagged dispersal model 
fit best, indicating that vectors first reproduced on ‘donor’ hosts 
and then dispersed to all other ‘receiver’ hosts in the experiment. 
Elevated resource supply slowed vector population growth rates, 
nearly doubled the carrying capacity of vectors per host, accel-
erated dispersal rates when vectors carried the virus and homo-
genised disease risk over space. This combination of model and 
experiment highlights the importance of vector demography and 
dispersal for spatiotemporal disease dynamics and delineates im-
pacts of relevant environmental change on this plant–aphid–virus 
system.

2  | MATERIAL S AND METHODS

2.1 | Study system

Barley and cereal yellow dwarf viruses (B/CYDVs) infect over 150 
species of grasses and cause substantial losses to cereal crops 
worldwide (Comeau & Dubuc, 1977; Irwin & Thresh, 1990). B/
CYDVs are obligately transmitted among grasses by aphid vectors. 
The cosmopolitan aphid, R. padi, efficiently transmits several B/
CYDV species including CYDV-RPV (hereafter: RPV). Epidemics 
in temperate regions begin when infectious (viruliferous) winged 
aphids (alates) aerially disperse from warmer climates and infect 
susceptible hosts (Irwin & Thresh, 1988). The virus then spreads 
locally from this focal point of infection as unwinged (apterous) 
aphids are born, acquire the virus by feeding on infected phloem 
and disperse to nearby plants (Bailey et al., 1995; Comeau & 
Dubuc, 1977; Irwin & Thresh, 1990). This process of local disease 
spread therefore depends on both aphid demography and dispersal 
(Skellam, 1951). Aphid fecundity is often higher on infected plants 
(Bosque-Perez & Eigenbrode, 2011), but this effect can reverse 
depending on host genotype (Jimenez-Martinez et al., 2004).

Enhanced resource supply could shape the local spread of 
B/CYDVs in several ways (Figure 2). Phosphorus fertilisation in-
creases infection prevalence of several B/CYDV species in the 
field (Seabloom et al., 2013). However, phosphorus reduces in-
fection prevalence of RPV when plants are exposed to a fixed 
number of aphids in the laboratory (Lacroix et al., 2014), perhaps 

by fuelling host defences against viruses. Thus, fertilisation can 
decrease per-aphid transmission. Nitrogen fertilisation typically 
enriches plant tissue chemistry and can increase aphid fecundity 
(Borer et al., 2009) and the number of aphids per plant (Comeau 
& Dubuc, 1977; Hamback et al., 2007). However, nitrogen can 
also inhibit aphid reproduction (Bogaert et al., 2017), especially 
in combination with phosphorus (Zehnder & Hunter, 2009), likely 
by boosting defences of plants against aphids. Thus, fertilisation 
might shape disease spread by altering the population growth rate 
and/or carrying capacity of vectors. If fertilisation alters aphid 
demography, it could also change the number of aphids dispers-
ing to susceptible plants, assuming either constant (Lombaert 
et al., 2006) or increasing per-capita dispersal with higher aphid 
density (Tokunaga & Suzuki, 2008). These multiple potential im-
pacts of elevated resources on disease have not been clearly delin-
eated during epidemics (see Figure 2).

2.2 | Experiment

We tracked the spatiotemporal spread of aphid vectors (R. padi) 
and viral infections (RPV) through populations of grass hosts 
(cultivated oats: A. sativa) and asked whether fertilisation or 
presence of the virus altered vector demography and/or disper-
sal. Each experimental ‘arena’ (20 arenas total) contained 100 
hosts arranged in a 10-by-10 grid (30 × 30 cm) of pots (60 mm 
tall, 27 mm diameter, 55 ml per pot). In each pot, we planted 
one seed (cv Coast Black oat, National plant germplasm sys-
tem, USDA) in sterilised, nutrient-free, water-saturated media 
(70% medium vermiculite [Sun Gro Horticulture], 30% Turface 
MVP [Turface Athletic] by volume). We planted extra pots to 
replace hosts that would be sampled destructively during the 
experiment. This influx of a few susceptible hosts (4% per week) 
is unlikely to have influenced disease spread, as models indi-
cated that the aphids dispersed globally throughout the arenas 
(see Section 3). Each arena was isolated in a mesh ‘bug dorm’ 
(32.5 × 32.5 × 77 cm; 160 μm mesh; MegaView Science Co.), 
grown in a climate-controlled room (23°C; 16:8 light:dark; 2× 
40 W cool white fluorescent bulbs), and watered twice per week 
(500 ml distributed evenly among the 100 plants). Two weeks 
after planting the seeds, when most plants had grown two 
leaves, we began the experiment.

The experiment crossed two levels of resource supply (unfer-
tilised [−R] or fertilised [+R]) with two levels of disease (with [+D] 
or without [−D] the virus). We replicated each combination of treat-
ments five times, for a total of 20 arenas. We watered plants with 
modified Hoagland's nutrient solutions that differed only in their 
levels of nitrogen and phosphorus (0.1 or 5% dilutions; 50× differ-
ences; see Appendix). All aphids originated from the same contin-
uously maintained culture. The virus was originally isolated in New 
York state (Appendix). For each arena, we placed 10 aphids in a vial, 
starved them for 2 hr and then added a 5 cm piece of oat tissue, 
either healthy or infected with RPV. Once the aphids began feeding 
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on the healthy tissues (~3 hr), we transferred them to the centre of 
their arenas. We allowed aphids to feed on the infected tissues for a 
standard 48-hr period to acquire the virus before transferring them. 
This slight difference in timing is unlikely to have biased our results 
(Appendix; Figure S1).

We sampled four plants from each arena weekly for 8 weeks 
(4–5 generations of aphids; spatial design shown in Figure S2). We 
never sampled the four plants in the centres of the arenas (Roman 
numeral I; where we added the aphids) because we could not re-
sample this spatial class for 8 weeks (only four plants), and their 
removal could have exerted large effects on the initial aphid popu-
lations. Instead, we randomly sampled one host from each of four 
concentric ‘rings’ radiating outward from the centre (I), including 
plants in rings II (eight plants total), III (20 plants), IV (28 plants) 
and V (36 plants; perimeter of the arena). Each week, we counted 
the number of aphids on each plant with a dissecting microscope 
and determined whether the plant was infected by flash-freezing 
its tissue, extracting RNA, synthesising cDNA and testing for the 
presence of the virus via PCR (see Appendix for details). We re-
placed all sampled plants with healthy hosts of the same age, and 
only sampled plants that had been present for the entire duration 
of the experiment.

2.3 | Models

We developed spatiotemporal disease models grounded in vector 
demography and dispersal. Such models could help predict disease 
dynamics across broader spatial scales and under scenarios of global 
change by explicitly linking disease to vector ecology (Jeger et al., 
2018). Therefore, instead of analysing our experiment with tradi-
tional statistical models, we developed general dynamical models 
and fit them to our data.

We developed three ordinary differential equation models that 
track changes in the densities of susceptible hosts (S), infected hosts 
(I) and vectors per host (V). The models differ in the number of spa-
tial classes of hosts (n) and could become more or less appropriate 
at different scales (Figure 1). First, the simplest ‘non-spatial’ model 
assumes that vectors distribute among all hosts and reproduce syn-
chronously across the host population. This model only includes 
one homogeneous spatial class of hosts (n = 1; Figure 1a,b). Second, 
the ‘lagged dispersal’ model assumes that vectors reproduce first on 
‘donor’ hosts (centre of the experimental arenas) and then disperse 
globally to all other ‘receiving’ hosts (all sampled hosts in the exper-
iment). This hypothesis of global dispersal seems reasonable given 
the spatial scale of the experiment (Bailey et al., 1995). This model 

F I G U R E  2   Four ways that elevated resource supply could shape disease dynamics via vector ecology. Simulations track total vector 
abundance and infection prevalence in donor hosts (V1 + W1 and %I1 [dashed]), and receiver hosts (V2 + W2 [solid black]; %I2 [solid red]) with 
lagged dispersal. Compared to a baseline (centre), elevated resource supply could alter disease dynamics by changing vector demography, 
dispersal and/or transmission (see ‘Study system’ in Section 2). Higher carrying capacity (K; top) could raise the abundance of vectors per 
host. Faster population growth rate (r; right) could accelerate the accumulation of vectors and infections. Faster vector dispersal rate  
(d; bottom) could homogenise disease dynamics across space. Reduced transmission coefficients from vector to host (βVH; left) could slow 
disease spread independently of vector ecology. Parameters (contrasts in parentheses): K = 150 vectors host−1 (top = 250), r = 0.2 day−1 
(right = 0.6), d = 0.01 day−1 (bottom = 0.1), βVH = 0.001 hosts vector−1 day−1 (left: 0.0001), βVH = 0.68 arenas host−1 day−1
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includes an additional dispersal parameter and two spatial classes 
of hosts: donors and receivers (n = 2; Figure 1c,d). Third, the ‘travel-
ling wave’ model assumes a series of lags as vectors reproduce and 
disperse between neighbouring hosts. Since our experiment includes 
five distinct spatial classes (centre of the arenas [I] and concentric 
rings radiating outward [II–V]), we fit the travelling wave model to 
five classes of hosts (n = 5; Figure 1e,f).

All three spatiotemporal scenarios are described by the general 
template of equations,

for i = 1, …, n, with non-infectious vectors (V), infectious vectors (W), 
susceptible hosts (S) and infected hosts (I) indexed by their spatial class 
(i; parameters defined in Table 1). Vectors grow logistically with a pop-
ulation growth rate (r) and per-host carrying capacity (K). In this study 
system, all vectors are born uninfectious, and hosts cannot recover 

from infection (Irwin & Thresh, 1990). Separate transmission coeffi-
cients regulate transmission from host to vector (βHV) and from vector 
to host (βVH). Rather than assuming frequency-dependent transmission 
(Keeling et al., 2007), we allow transmission to depend on the abun-
dance of infectious vectors per host. We assume that all vectors emi-
grate from hosts with a constant per-capita dispersal rate, d (Lombaert 
et al., 2006).

In the three scenarios, different spatiotemporal patterns arise 
because immigrating vectors (Vm and Wm) can arrive from different 
locations. In the non-spatial model (n = 1 spatial class),

so that immigration and emigration offset one another exactly, and 
vector dynamics follow pure logistic growth.

For lagged dispersal (n = 2 spatial classes),

where Hi is the sum of susceptible and infected hosts in each spatial 
class (Hi is a constant). Here, the total number of dispersing non-infec-
tious vectors from both classes is d(V1H1+V2H2). This global pool of 
dispersing vectors is then distributed evenly among all hosts (i.e. vec-
tors disperse globally), with a fraction Hi

H1+H2

 immigrating into each spa-
tial class i. This fraction weights net immigration by the relative 
abundance of hosts in each class so that each host receives the same 
number of immigrating vectors even if host densities differ between 
classes. Thus, the total number of non-infectious vectors dispersing 
into each class is d(V1H1+V2H2)

(

Hi

H1+H2

)

, and the per-capita number of 
immigrating non-infectious vectors per individual host (after dividing 
by Hi) becomes d

(

V1
H1

H1+H2

+V2
H2

H1+H2

)

 for both spatial classes (Equation 
6a). Similar logic applies to the infectious vectors (Equation 6b). This 
lagged dispersal model converges with the non-spatial model as disper-
sal rates increase (Appendix; Figure S3).

Finally, for the travelling wave model (n = 5 spatial classes),

where vectors immigrate to new hosts from the current (i), preceding 
(i − 1) and succeeding classes (i + 1). The proportion of immigrating 
vectors that stay in their original class is the number of hosts in that 
class (Hi) relative to all new potential hosts (Hi + Hi+1 + Hi−1). Thus, if the 
density of hosts increases between spatial classes (Hi+1 > Hi, as in our 

(1)
dVi

��
= r(Vi+Wi)

(

1−
Vi+Wi

K

)

−dVi+dVm,i−�HVViIi,

(2)
dWi

��
=�HVViIi−dWi+dWm,i,

(3)
dSi

��
=−�VHSiWi,

(4)
dIi

��
=�VHSiWi,

(5a)Vm,1=V1,

(5b)Wm,1=W1,

(6a)Vm,1=Vm,2=V1

H1

H1+H2

+V2

H2

H1+H2

,

(6b)Wm,1=Wm,2=W1

H1

H1+H2

+W2

H2

H1+H2

,

(7a)Vm,i=Vi

Hi

Hi−1+Hi+Hi+1

+Vi−1

Hi

Hi−2+Hi−1+Hi

+Vi+1

Hi

Hi+Hi+1+Hi+2

,

(7b)Wm,i=Wi

Hi

Hi−1+Hi+Hi+1

+Wi−1

Hi

Hi−2+Hi−1+Hi

+Wi+1

Hi

Hi+Hi+1+Hi+2

,

TA B L E  1   Definitions and units for state variables and 
parameters of the models

Symbol Definition Units

V Abundance of non-infectious vectors Vectors host−1

Vm Abundance of immigrating non-
infectious vectors

Vectors host−1

W Abundance of infectious vectors Vectors host−1

Wm Abundance of immigrating infectious 
vectors

Vectors host−1

S Density of susceptible hosts Hosts arena−1

I Density of infected hosts Hosts arena−1

H Density of susceptible and infected 
hosts

Hosts arena−1

n Number of spatial classes of hosts —

i Index of spatial classes —

r Population growth rate of the vector Day−1

K Carrying capacity of the vector Vectors host−1

d Dispersal rate of the vector Day−1

βVH Transmission coefficient from vector 
to host

Hosts 
vector−1 day−1

βHV Transmission coefficient from host 
to vector

Arenas 
host−1 day−1

θ Overdispersion of vectors among 
hosts

—
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experiment), the pool of dispersing vectors is diluted among the larger 
subpopulation of new hosts. We assume reflecting boundary condi-
tions by setting all densities of hosts and vectors outside of classes 
1–5 equal to zero (e.g. V0=V6=0). These assumptions cause different 
densities of vectors per host in each spatial class at extremely high dis-
persal rates (Appendix; Figure S4).

Importantly, environmental change—fertilisation in this case 
study—could impact disease dynamics by changing any of the pa-
rameters, including the vectors’ population growth rate (r), carrying 
capacity (K), dispersal rate (d) or transmission from vector to host 
(βVH; Figure 2).

2.4 | Model fitting

We fit all three models to the experiment using maximum likeli-
hood (see Appendix for details). We simulated the models using 
the deSolve package in R version 3.5.2 (R Core Team, 2017; 
Soetaert et al., 2010), with starting conditions matching the ex-
perimental design. We fit these simulations to our data with the 
bbmle package (Bolker, 2008). We assumed that host infections (S 
or I) were distributed as Bernoulli variables. The aphid data were 
overdispersed relative to a Poisson distribution (the variance ex-
ceeded the mean), so we assumed that the total abundance of 
vectors per host (V + W ) followed a negative binomial distribu-
tion and fit the degree of vector overdispersion (θ). In the global 
dispersal model, all observed data linked to the dynamics in the 
receiver class (i = 2); for the travelling wave model, data linked 
to spatial classes 2–5 (see Appendix for details). We were un-
able to fit both transmission coefficients, so we set transmission 
from host to vectors to a reasonable constant (βHV = 0.68 arenas 
host−1 day−1 Jimenez-Martinez & Bosque-Perez, 2004). We esti-
mated all of the other parameters (r, K, d, θ and βVH) by search-
ing likelihood surfaces with an optimiser with box constraints 
(L-BFGS-B). In the lagged dispersal model, dynamics on donor and 

receiver classes became indistinguishable when dispersal rates 
exceeded about 0.5 day−1 because excessive movement homog-
enised the spatial classes (Appendix; Figure S3). Since optimisers 
could not distinguish among dispersal rates in these scenarios, 
we set an upper limit of 0.5 on the estimation of d. We confirmed 
performance of our model fitting machinery by fitting models to 
simulated data (details in the Appendix; Figure S5).

We determined how environmental change shaped vector 
demography, dispersal and disease with a three-step model sim-
plification (Table 2) and competition procedure (Table 3). This 
simplified procedure reduced the number of candidate mod-
els from 1,152 to 18. First, backwards simplification of the non- 
spatial model determined which non-spatial traits of vectors (r, K, θ 
and βVH) differed with resource supply (R) or disease (D). If remov-
ing an effect did not substantially worsen model fit (ΔAIC < −5, 
compared to the full model with all treatment effects [model 
1A]), then it was removed from the simplified model (model 1F). 
Second, we incorporated vector dispersal by competing this sim-
plified non-spatial model against the lagged dispersal and travelling 
wave models, with all possible effects of resources and disease 
on dispersal rates (Table 3). Finally, we also considered a ‘full’ 
spatial model (model 3A) that reintroduced the previously omit-
ted non-spatial terms. We determined the best model with AIC 
(Burnham & Anderson, 2002). When dispersal rate hit its upper 
limit (Figure S3), we calculated AIC with and without a penalty 
for d. We bootstrapped 95% confidence intervals around param-
eters of the best model (10,000 iterations; resampling hosts with 
replacement at each time, across arenas, within treatments), and 
used the bootstrapped distributions to assign post-hoc p values 
to treatment effects. For example, the p value for the effect of 
resources on carrying capacity (K) was the proportion of boot-
strapped K 's from the low resource treatment that exceeded the 
estimate of K with high resources. Since the bootstrapped distri-
butions were skewed, we report the more conservative p value for 
each test.

TA B L E  2   Simplification of the non-spatial model. The full model (model 1A; bold) includes all possible effects of resources (R) and disease 
(D) on traits of vectors (r, K, θ and βVH). Each effect is removed individually (models 1B–1E; 1G–1I), with ΔAIC's calculated as differences from 
the full model. Generally, ΔAIC > 10 indicates poor model performance. The simplified non-spatial model (1F; bold) retains all important 
effects (individual ΔAIC's < −5), which are also included in the spatial models (Table 3)

Spatiotemporal 
scenario

Mod.  
ID Model reduction # Param. AIC ΔAIC

Removed from  
simplified model?

Non-spatial 1A Full model (all terms  
included)

14 5,108 0 —

Non-spatial 1B Without R → βVH 13 4,836 1.7 Yes

Non-spatial 1C Without R → θ 12 4,838 0.1 Yes

Non-spatial 1D Without D → K 12 4,841 −3.3 Yes

Non-spatial 1E Without D → θ 12 4,842 −4.5 Yes

Non-spatial 1F Simplified model 8 4,845 −7.2 —

Non-spatial 1G Without R → K 12 4,865 −27.2 No

Non-spatial 1H Without R → r 12 4,880 −41.8 No

Non-spatial 1I Without D → r 12 5,009 −171.2 No
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3  | RESULTS

In the experiment, vector populations grew rapidly and pla-
teaued as aphids reproduced and dispersed among hosts 
(Figure 3a,b,d,e). All host plants in treatments with the virus be-
came infected within 8 weeks (Figure 3c,f). We confirmed that all 
hosts in treatments without the virus remained uninfected. We 
detected very few winged aphids (32 of 33,000 sampled aphids, 
<0.1%, mostly at the end of the experiment), indicating that 
transmission occurred predominantly as aphid vectors crawled 
between hosts.

Vector demography in the non-spatial model differed with 
both resource supply and disease (Table 1). Carrying capac-
ity of the vector (K ) responded to resource supply (model 
1G; ΔAIC = −27.2), and growth rate (r) responded to both re-
source supply (model 1H; ΔAIC = −41.8) and disease (model 1I; 
ΔAIC = −171.2). All other terms were removed from the simplified 
non-spatial model (model 1F; ΔAIC = −7.2) and all subsequent spa-
tial models (except model 3A).

The lagged dispersal model best explained spatial dynamics of the 
experiment, with dispersal rates (d) differing with both resource sup-
ply and disease (models 2A and 3A). Thus, vectors first reproduced 
on ‘donor’ hosts before dispersing to other ‘receiver’ hosts in the are-
nas, and infection prevalence in the receiver hosts lagged behind the 
donors (Figure 3c). The second-ranking model reintroduced all of the 
‘unimportant’ non-spatial terms, but did not improve model fit (model 
3A; ΔAIC = 2.3). We therefore preferred the simpler of these two 
models (model 2A). These two models vastly outperformed all others 
(Table 3). Their Akaike weights (w: probability of being best among 
the models tested) were 0.76 and 0.24, respectively, with quantita-
tively similar AIC scores with and without a penalty for the parameter 

d when it reached its upper limit (Table 3). The lagged dispersal model 
fit substantially worse when dispersal rates varied only with resources 
(model 2B; w = 2.1 × 10−3) or disease (model 2C; w = 5.8 × 10−5). 
Thus, resource supply and disease together altered vector dispersal. 
The simplified non-spatial model fit even more poorly (model 1F; 
w = 1.1 × 10−7), despite requiring fewer parameters, and underes-
timated the population growth rate of vectors (r) by as much as 34% 
(Appendix; Figure S6; Table S2). Fit of the travelling wave model 
was the worst (models 2E–H; all w < 10−76), indicating that vectors 
and infections did not spread across the arenas in travelling waves 
(Figure S6).

The best-fitting lagged dispersal model flexibly distinguished 
among differences in population growth rates (r), carrying ca-
pacities (K) and dispersal rates of vectors (d; Figure 2; Figure S7). 
Post-hoc comparisons confirmed how resource supply and dis-
ease altered these demographic and behavioural traits of vectors. 
Population growth rates of vectors decreased with resource supply 
(Figure 4a), both with disease (p = 0.034) and without (p = 0.020). 
Population growth rates also decreased with disease, significantly 
with high resource supply (p = 0.021) and marginally with low re-
source supply (p = 0.060). The carrying capacity of vectors per host 
increased dramatically, nearly doubling with higher resource sup-
ply (Figure 4b; p < 0.0001). Dispersal rate of vectors was clearly 
slowest in treatments that combined disease and low resource 
supply (Figure 4c). In the other treatments, dispersal rates over-
lapped with the upper limit of d, making the lagged dispersal and 
non-spatial models indistinguishable. In other words, with high re-
source supply and/or absence of disease, dispersal rates were rapid 
enough justify using the simpler non-spatial model. However, with 
low resource supply and disease, dispersal rates were substantially 
slower (p < 0.0001).

TA B L E  3   Model competition among spatiotemporal scenarios. Models include the simplified non-spatial model (model 1F; Table 2) and 
all possible effects of resources (R) and disease (D) on vector dispersal (d) in lagged dispersal and travelling wave models. A ‘full’ spatial model 
(model 3A) reintroduces the previously omitted non-spatial terms (Table 2). Models are sorted by AIC, with ΔAIC = 0 for the winning model 
(model 2A; bold)

Spatiotemporal  
scenario

Mod.  
ID Model addition # Param. AIC ΔAIC

Akaike 
weight, wa 

Lagged dispersal 2A With R → d & D → d 12 4,814 0 0.76 (0.76)b 

Lagged dispersal 3A With R → d, βVH & θ; D → d, K & θ 18 4,816 2.3 0.24 (0.24)

Lagged dispersal 2B With R → d 10 4,825 11.8 2.1 × 10−3

Lagged dispersal 2C With D → d 10 4,833 19.0 5.8 × 10−5

Lagged dispersal 2D With single d 9 4,839 25.5 2.2 × 10−6

Non-spatial 1F Simplified non-spatial (Table 2) 8 4,845 31.4 1.1 × 10−7

Travelling wave 2E With D → d 10 5,164 350.3 6.5 × 10−77

Travelling wave 2F With R → d & D → d 12 5,167 353.6 1.3 × 10−77

Travelling wave 2G With single d 9 5,317 503.1 4.3 × 10−110

Travelling wave 2H With R → d 10 5,319 504.9 1.7 × 10−110

aAkaike weights indicate the probability of a model being best among those considered. 
bParentheses indicate a less conservative w, with AIC's not penalised for the dispersal parameter d when it hit its upper limit (# parameters = n−1 for 
models 2A, 3A and 2B). 
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F I G U R E  3   The spread of vectors and infections in experimental arenas. The best model (lagged dispersal; model 2A; Table 3) is fit to each 
treatment. Low resource supply (left): Vectors grow logistically in the absence (a) or presence of disease (b). Without disease, dynamics are 
nearly indistinguishable on donor (dashed line) and receiver hosts (solid line). With disease, vectors disperse slower, and abundances on 
receiver hosts lag behind. (c) All hosts become infected, with a corresponding lag between infection prevalence in the donor (dashed) and 
receiver hosts (solid). High resource supply (right): Vectors reach higher carrying capacities with elevated resource supply, both without (d) 
and with disease (e). Fast dispersal rates homogenise vector dynamics on donor and receiver hosts (overlapping dashed and solid lines). (f) 
Disease risk is also spatially homogenised, with all hosts rapidly becoming infected (no lag in infection prevalence between classes). Key to 
spatial structure: Hosts radiate outward from the centre (I; no data) to rings II (red circles), III (orange squares), IV (blue upwards triangles) 
and V (purple downward triangles)

F I G U R E  4   Effects of resources (±R) and disease (±D) on vector demography and dispersal. Points show traits of vectors (fitted 
parameters from the best lagged dispersal model; model 2A) with bootstrapped 95% confidence intervals. (a) Population growth rate (r) 
decreases with higher resource supply and presence of the pathogen (note the right-skew on the bootstrapped distributions). (b) Carrying 
capacity of the vector (K) increases with resource supply. (c) Dispersal rate (d) is slowest with the combination of low resources and disease. 
In other treatments, dispersal rates are high enough (horizontal dashed line) that the lagged dispersal and non-spatial models become 
indistinguishable. Neither (d) transmission from vector to host (βHV) nor (e) vector overdispersion (θ) differ among treatments (Table 2). 
Key: shapes = resource level (upward triangles = high; downward triangles = low; circles = both); shading = disease (white = without; 
black = with; grey = both)
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4  | DISCUSSION

The transmission of arthropod-vectored diseases across space depends 
on vector demography and dispersal. Although foundational models of 
vectored diseases often assume frequency-dependent transmission 
(Antonovics et al., 1995; Chan & Jeger, 1994), more recent models that 
explicitly track vector dynamics have led to new insights and predic-
tions (Chao et al., 2013; Crowder et al., 2019; Shoemaker et al., 2019). 
However, these models are rarely paired with experiments that test 
how environmental change shapes disease via vector ecology. Here, we 
developed models for three scenarios: a non-spatial transmission model, 
lagged dispersal of vectors across space and a travelling wave. We asked 
how environmental eutrophication (fertilisation of plant hosts) altered 
vector demography and dispersal and the spread of disease in experi-
mental arenas. The lagged dispersal model provided the strongest fit to 
the data, indicating that vectors first reproduced on an initial ‘donor’ 
class of hosts and then dispersed globally to all others. Vector carry-
ing capacity (K) nearly doubled with resource supply, population growth 
rates (r) decreased with both resource supply and disease, and dispersal 
rates (d) were slowest with the combination of low resource supply and 
disease. This model and experiment emphasise the importance of vec-
tor demography and dispersal for the transmission of disease over space 
and time, especially under conditions of environmental change.

The simplest, non-spatial model adequately described dynamics in 
three of four treatments, but the lagged dispersal model became es-
sential with low resource supply and disease. Ignoring space in disease 
models is tempting because it simplifies predictions and enables ana-
lytical tractability (Keeling et al., 2007; Shaw et al., 2019). Here, space 
became important with presence of the virus and low resource supply 
to hosts. Together, these treatments constrained vector populations by 
allowing relatively slow population growth rates (r), low carrying capac-
ities (K) and slow dispersal rates (d). Under these conditions, dispersal 
of vectors across space—after a period of initial reproduction—played a 
key role in structuring the spatial distribution of vectors and infections. 
Notably, infection prevalence in receiver hosts lagged 2 weeks behind 
infection prevalence in the donors. The simpler non-spatial model badly 
underestimated vector population growth rate (by 34%) and failed to 
capture this spatial lag. In the arenas with elevated resource supply, 
faster aphid dispersal rates homogenised disease risk across space. This 
increase in dispersal rate may reflect changes in plant growth and phys-
iology: Fertilised plants were larger with more overlapping leaves, likely 
promoting aphid movement and disease spread. Broadly, these results 
suggest that space and movement could become more important fea-
tures of disease models when environmental conditions exert stronger 
constraints on vector demography and dispersal.

Higher environmental resource supply decreased aphid popula-
tion growth rates (r) but nearly doubled the carrying capacity of aphids 
per plant (K). Each of these effects could shape disease more strongly 
at different spatial scales. Aphid fecundity often increases with ni-
trogen (Borer et al., 2009), but nitrogen can also slow aphid growth 
rates (Bogaert et al., 2017) especially in combination with phosphorus 
(Zehnder & Hunter, 2009). These results suggest that elevated resources 
(especially phosphorus) may allow plants to mount stronger defences 

against aphids. Presence of the virus also reduced aphid growth rates in 
the arenas, which was atypical (Bosque-Perez & Eigenbrode, 2011) but 
not unusual (Jimenez-Martinez et al., 2004). Despite slower initial popu-
lation growth, aphids reached higher carrying capacities (K) on fertilised 
plants. Populations of other vectors may be similarly limited by the re-
sources of their hosts. Ticks are especially abundant after masting years 
with high acorn production (Ostfeld et al., 1996); kissing bugs are more 
common in palms growing in richer soils (Abad-Franch et al., 2010) and 
more mosquitos emerge from eutrophic wetlands (Pope et al., 2005; 
Schrama et al., 2018). In the arenas, most hosts became infected be-
fore aphids reached their carrying capacity. Thus, at this scale (i.e. early 
stages of an epidemic), effects of resources on r might shape disease 
more strongly than effects on K. However, effects on carrying capacity 
could become more important at broader scales because more aphids 
dispersing away from infected plants could fuel more expansive ep-
idemics (Comeau & Dubuc, 1977; Hamback et al., 2007). Thus, envi-
ronmental change can have contrasting effects on short-term (r) and 
long-term vector demography (K), and implication of these effects for 
disease may vary by scale.

The three models developed here could also become more or less 
appropriate at different scales. The lagged dispersal model provided 
the best overall fit to the experimental arenas, which were relatively 
small populations of 100 hosts. The non-spatial model also seemed 
adequate when aphids dispersed rapidly, and could predict disease 
dynamics at smaller spatial scales, longer timescales, or if vectors 
disperse greater distances. The travelling wave model fit universally 
poorly, likely reflecting the small size of the arenas relative to aphids’ 
ability to disperse among hosts (Bailey et al., 1995). However, at 
much broader spatial scales of agricultural fields, travelling waves of 
infection emanate outward from primary BYDV infections (Comeau 
& Dubuc, 1977; Irwin & Thresh, 1990). Similar waves of insects 
and pathogens have spread across forests (Bjørnstad et al., 2002; 
Evans, 2016; Menkis et al., 2016). Travelling waves have also been 
detected for dengue, a mosquito-borne virus in humans (Cummings 
et al., 2004) and tick-borne diseases have been linked to transmis-
sion at multiple scales due to movement of both vectors and hosts 
(Foley et al., 2016; Walter et al., 2016). Thus, qualitatively different 
spatiotemporal disease patterns can emerge for vectored diseases, 
depending on (a) the space occupied by the host population, (b) the 
relative distance over which vectors (and/or hosts) disperse and (c) 
the lag time required for vector feeding and/or reproduction.

The small, tractable scale of the arenas allowed us to fit key param-
eters for dynamical disease models (r, K, d and βHV) and ask how these 
vector traits varied with experimental eutrophication. One limitation of 
this approach is that extension of these models to broader spatial scales 
may require more refined assumptions about vector dispersal. Per-
capita dispersal can remain constant (Lombaert et al., 2006) or increase 
with aphid density (Tokunaga & Suzuki, 2008). Our simplifying assump-
tion of constant dispersal rates seemed reasonable since most trans-
mission in the arenas occurred before aphids reached high densities. 
At larger scales (e.g. in natural systems), this assumption could be more 
consequential. For example, models show that increasingly density- 
dependent dispersal can slow disease spread (Shaw et al., 2017), and 
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that elevated carrying capacity can accelerate spread under these  
conditions. In the experiment, we were also able to ignore winged 
aphids (alates) and dispersal distances, because alates were extremely 
rare and crawling (apterous) aphids dispersed globally within the 
arena. Yet, alates are critical for long-distance viral spread (Donnelly 
et al., 2019; Irwin & Thresh, 1988), and apterous aphids can crawl sur-
prisingly far (Bailey et al., 1995). Thus, extensions of this framework 
to broader spatial scales would require additional experiments to ask 
how resource supply rates affect the density dependence of dispersal, 
the production of alates and the maximum dispersal distances of both 
alates and apterous aphids.

Insects are critical for the spatiotemporal spread of vectored 
diseases, but key components of vector ecology, such as their de-
mography, dispersal and responses to environmental change, remain 
understudied in theory and experiments. Here, we emphasised the 
importance of vector reproduction and dispersal relative to the 
spatial scale of host populations, especially in light of relevant envi-
ronmental change. The fields of population biology and behavioural 
ecology each have deep theoretical and empirical lineages, and in-
fusing these perspectives into disease ecology is sure to lead to new 
questions and promising frontiers.
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